Двойное рождение
Соборный настоятель небольшого городка Каммин в Померании Эвальд Георг фон Клейст занимался электрическими опытами потихоньку. Он не публиковал своих результатов – зачем вводить во искушение прихожан – и довольствовался домашними восторгами. Одно огорчало отца-настоятеля: электрическая машина, счастливым обладателем которой он являлся, была до чрезвычайности слабой. Оттого и искры, которые случалось извлекать из ее кондуктора благочестивому экспериментатору, были едва видны при свете дня.
Однажды, в счастливые часы занятий любимыми опытами, Клейст решил зарядить свою микстуру, чтобы усилить ее действие (отца-настоятеля мучил кашель). Он вставил в бутылочку железный гвоздь и поднес его к кондуктору машины. Несколько оборотов стеклянного шара – и жидкость должна была зарядиться… Осталось вынуть гвоздь из бутылки. Держа склянку в одной руке, почтенный священнослужитель другой взялся за головку гвоздя и… получил весьма ощутимый электрический удар. Клейст даже не испугался. Он только удивился – откуда? Его слабая машина не способна была давать и десятой доли того электричества, силу которого он почувствовал. Впрочем, что толку в раздумьях? Если результат опыта непонятен, его нужно в точности воспроизвести еще, потом еще и еще… И каждый раз бутылка с жидкостью и гвоздем, накопив электричество от маленькой машины, исправно щелкала экспериментатора по пальцу электрическими ударами.
«Накопив электричество!» Вы чувствуете, это же совсем новое свойство неведомой силы. А что будет, если налить в склянку с гвоздем спирт или ртуть? Не получит ли она еще большую способность накапливать электричество? Через некоторое время, убедившись в том, что он действительно открыл новый способ накапливать электричество, фон Клейст описал результаты своих опытов в письме и послал его в Данциг протодиакону – своему начальнику. Протодиакон физикой не увлекался, но, будучи человеком обязательным, передал сообщение коллеги бургомистру Даниэлю Гралату, человеку вполне просвещенному. Совсем недавно тот организовал в своем городе общество естествоиспытателей, которое жаждало деятельности. И потому новинка фон Клейста была как нельзя более кстати. Бургомистр Гралат начал с того, что взял бутыль большего объема и с большим гвоздем. По-видимому, все бургомистры – по должности своей – любят, чтобы дело выглядело крупно и эффектно (вспомним Герике). Гралат обернул бутылку металлической фольгой, и электрические удары еще усилились. Ему пришло в голову составить из таких бутылей батарею и тоже зарядить ее. А затем. Бедные, бедные члены данцигского общества естествоиспытателей. Бургомистр предложил двадцати человекам взяться за руки, образовать цепь, а затем крайним в цепи коснуться пальцами гвоздя и обкладки бутыли, то есть замкнуть цепь! Эффект был потрясающий. Окрестные жители давно не слышали такого вопля…
В истории науки и техники часто бывает, что изобретения малые и большие делаются одновременно разными людьми и совсем в разных местах. Чтобы продолжить историю чудесной «накопительной банки», давайте из славного города Данцига переедем в не менее славный город Лейден и познакомимся с почтенным профессором Мушенбруком.
Питер ван Мушенбрук (1692–1761)
С 1719 по 1723 год выпускник Лейденского университета Питер ван Мушенбрук был профессором Дуйсбургского университета. Особых научных заслуг у молодого профессора не отмечалось, и он перешел в университет города Клейста, а в 1740 году вернулся в alma mater, где занял кафедру физики. В Лейденском университете была прекрасная лаборатория, старые традиции и слава. Лучи этой славы привлекали учеников, которые давали доход профессорам. Мушенбрук занялся эффектными электрическими опытами. Таинственная сила интересовала всех и была в большой моде.
Профессор умел красно и значительно говорить, надувать щеки и трясти париком, рассказывая о своих достижениях. Однако, по чести говоря, особых успехов у него не было. Но такое поведение и по сей день нередко вводит неискушенного человека в заблуждение. А уж двести-то с лишним лет назад находилось немало простаков, называвших герра профессора не иначе как великим Мушенбруком.
Однажды слепая фортуна подсунула Мушенбруку ученика по имени Кунеус. Это был богатый лейденский горожанин, желавший развлечься опытами не иначе как в лаборатории «великого ученого». Там он, познакомившись с электрической машиной, попытался наполнить электричеством… банку с водой. Идея, по воззрениям того времени, не такая уж нелепая. Из многочисленных опытов было известно, что вода электризуется. Почему же не попробовать сохранить электричество в воде? И вот Кунеус взял банку, налил воду и опустил в нее металлический стержень, соединенный с кондуктором электрической машины. Слуге он приказал крутить ручку машины.
Опыт в Лейдене
Через некоторое время, считая, что вода достаточно зарядилась, экспериментатор решил вынуть стержень. Но дотронувшись до него другой рукой, любитель науки испытал, как он сам говорил впоследствии, «ни с чем не сравнимое потрясение». Кунеус ничего не понял. Уронил банку, разлил «заряженную» воду и побежал жаловаться профессору.
Отдадим должное Мушенбруку. Он решил тут же проверить открытие своего ученика. Условия опыта в точности восстановили. Только теперь на место ученика встал учитель. Кунеус закрутил рукоятку машины.
Сильный электрический удар поверг Мушенбрука в такое изумление, что «испытать его еще раз я не согласился бы даже ради французской короны», – писал он позже в своих воспоминаниях.
Батарея лейденских банок
Одним из первых узнал о лейденском эксперименте вездесущий аббат Нолле. Он тут же повторил и усовершенствовал усилительную банку, составил батарею и стал получать все более и более сильные электрические искры, настоящие маленькие молнии. В Версале, в присутствии короля и придворных, аббат выстроил сто восемьдесят мушкетеров кольцом. Велел им взяться за руки. Первому дал в руку банку, зарядил ее от машины и предложил последнему в цепи вытащить из банки металлический стержень… «Было очень курьезно видеть разнообразие жестов и слышать мгновенный вскрик, исторгаемый неожиданностью у большей части получающих удар». Король веселился. Но еще больший интерес вспыхнул в его глазах, когда на столик перед ним, рядом с электрической машиной и батареей усилительных банок, Нолле поставил маленькую металлическую клетку с птичкой. Обернув длинной цепочкой прутья клетки, он намотал другой ее конец на банку. Вторую цепочку, соединенную с металлическим стержнем банки, аббат пропустил через стеклянную трубочку и повесил над жердочкой так, чтобы птичка не могла задевать за нее головой. После этого помощник стал крутить электрическую машину. Придворные затаили дыхание. Наступил момент, когда между цепочкой и метавшимся по клетке воробьем проскочила голубая искра. Раздался треск, и несчастная пичуга свалилась без признаков жизни. Это была первая жертва искусственной молнии.
– Браво! – сказал Людовик XV и поднялся с места.
– Браво! – повторили придворные. Толпясь, они поспешили за своим сюзереном прочь от ученого, продемонстрировавшего им, что электричество может не только развлекать.
Лейденская банка и разрядник
Опыты с усилительной банкой, получившей благодаря стараниям того же Нолле название лейденской банки, были очень эффектны. Их повторяли в салонах и в ярмарочных балаганах. Голубыми искрами, извлеченными из пальца, из носа наэлектризованного человека, поджигали порох и спирт, убивали мышей и цыплят.
В один прекрасный день семьсот благочестивых парижских монахов, взявшись за руки, образовали цепь. И все они, как один, высоко подпрыгнули и возопили от страха, когда крайние разрядили на себя невзрачную банку, наполненную таинственной электрической жидкостью.
В Англии опыты с лейденскими банками демонстрировал в Королевском обществе врач Уильям Уотсон. В 1747 году он с помощью длинной проволоки соорудил цепь длиной не менее двух миль и «провел» электричество через Темзу. Исследуя роль жидкости, заполняющей банку, Уотсон вместо воды или спирта наполнил банку дробью, и результат не изменился. Тогда он вообще заменил содержимое банки еще одной, внутренней металлической обкладкой, соединенной с центральным стержнем. Теперь лейденская банка получила свою окончательную форму.
Правда, его коллега доктор Бевис обложил свинцовыми пластинами просто кусок стекла. Он обнаружил, что чем больше размеры пластин и меньше расстояние между ними, тем большее количество электричества на них накапливается.
Так в науку об электричестве пришел конденсатор – емкость, заполняемая «электрической материей». Правда, пока что принцип, или «механизм», его работы был непонятен, а величина емкости ничтожна. Но искра, получавшаяся при разряде, была способна, как молния, убить живое существо. Опасное родство, не правда ли?
Гроза
Лейденская банка Мушенбрука – это конденсатор, то есть емкость, накапливающая электричество. Каждый электрический конденсатор представляет собой систему из двух (или нескольких) проводников (обкладок), разделенных веществом, не проводящим электрический ток, – диэлектриком. При подключении к источнику постоянного напряжения на обкладках конденсатора накапливается электрический заряд, а в диэлектрике создается электрическое поле. Чтобы наглядно представить себе принцип действия электрического конденсатора, его можно сравнить с механической пружиной, запасающей энергию при сжатии.
Скажите, вы боитесь грозы?
Постарайтесь ответить на вопрос, заданный в заголовке, откровенно. Если не боитесь, то – нет, а коли страшно, то – да! Ничего постыдного в этом нет. Гроза – самое величественное, самое красивое и одно из самых. грозных явлений природы. Ведь правда? Я, например, знаю многих в принципе достаточно смелых людей, которые бегут от молнии, а еще пуще – от грома.
Корабль, расколотый молнией
Но попробуем нарисовать в нашем воображении картину этого явления. Причем нарисовать так, чтобы мы с вами были его участниками! Скажем, так: по пути из леса домой (будем считать, что это был поход за грибами) мы выходим на край поля. Дождь еще не начался, но тучи, низкие, набухшие влагой, обложили все небо.
В лесу было темно, как вечером, а вышли на открытое место – и здесь света не больше. Того и гляди, польет дождь. Что делать? До дома вроде бы недалеко, да мокнуть не хочется. Пока мы топчемся в нерешительности, раздумываем, то ли под елку спрятаться, то ли под стог забиться, вдалеке начинает громыхать. Налетают первые порывы ветра, как залпы. Под их ударами поле, словно море в бурю: волны идут по хлебу, образуют водовороты из колосьев, подымают смерчи. Решайте скорее. Может быть, лучше переждать? Летние грозы скоротечны!…
И вдруг как сверкнет! Все вокруг словно само загорается голубым свечением. Уж молнии-то и нет, а в глазах все стоит и стоит ослепительная вспышка.
Не знаю, как вы, а я всегда после вспышки молнии начинаю считать: «И-раз, и-два, и-три…» Трах-тара-рах! – раздается на тридцатой секунде счета раскат грома. Тридцать секунд отделили его от вспышки. Значит, эпицентр грозы еще километрах в десяти. Далеко это или близко, и когда гроза дойдет до нас? Звуковая волна распространяется в воздухе со скоростью примерно 333 м/с. Обычно грозы движутся со скоростью не больше 40 км/ч. Раз так, то у нас в запасе как минимум минут пятнадцать. Бежим!
Так и есть! Едва мы поднялись на порог, как небо раскололось над самой крышей, гром грянул одновременно с блеском молнии, и полил дождь. Косые струи полетели над землей, срывая листья с деревьев, ломая сучья. Блеск молнии и грохот разрядов слились! Но мы под крышей, и оттого в груди поднимается какой-то отчаянный мрачный восторг – вполне в духе дикой, мятущейся красоты природы.
А ведь сколько рассказов об ужасных случаях поражения молнией на земле и на море слыхал каждый из нас.
В тайниках души у каждого гнездится атавистический страх. Страх, воспитанный поколениями беззащитных предков, когда не было теплых домов с громоотводами, не было знаний, что такое гроза, не было даже могучего бога, единовластного в решении покарать или помиловать. А был маленький, может быть, даже голый, одинокий человечек и бесконечная мощь разгулявшейся, ликующей природы.
Трах-тара-рах! Трах! Трах! – грохочет гром. Страшно первобытному человеку. Змеи-молнии жалят землю. Черные тучи накрыли ее, как пологом. Где голубое небо? Где ласковое солнце? Куда спрятаться от пронизывающего ветра, от холодного дождя? Может быть, бежать? Бежать быстро, еще быстрее, еще, пока не выскочит сердце из груди и не упадет человек бездыханным. Или, подобно птице и зверю, забиться под дерево, лицом в корни и лежать тихо-тихо… Ждать, пока добрые силы природы победят злые и окружающий мир снова прояснится и даст место в себе человеку. А кому не даст – тот погибнет.
Замечательный исследователь и собиратель русского фольклора Александр Николаевич Афанасьев писал, что древние люди смотрели на окружающий мир совсем другими глазами, нежели мы. Они не отделяли своего существования от остальной природы, чувствовали себя с нею единым целым. В представлении наших предков облака и звери, небесные светила и озера ничем особенно не отличались от самого человека. Все вокруг жило своей жизнью. Враждебные силы боролись друг с другом, а значит, и с человеком. Добрые силы помогали. Все непонятное было враждебно человеку. И прежде всего такое страшное атмосферное явление, как гроза. Чтобы выжить в этой титанической борьбе стихий, человек просил помощи у тех же сил, заклинал небесный огонь, приносил ему жертвы.
Страх перед неведомым породил почитание стихий, их обожествление. И это обожествление, а на самом деле очеловечивание таинственных сил природы делало мир не таким страшным. Если гигантскими процессами управляют боги, а сами боги – как люди, то ничто человеческое им не чуждо. Богов можно упросить, умилостивить, подкупить и. заручиться их помощью, поддержкой. Тут уж грозный мир, еще недавно наполненный мутным туманом страха, прояснялся и становился не столь ужасным.
Это один путь оградить себя от страха – создать всесильного бога, заранее согласившись на смирение. Но есть и другой путь – познание. Конечно, гроза – зрелище могучее и эффектное, но это только атмосферное явление. Его надо изучать с должной осторожностью, но не пугаться и не видеть в нем ничего сверхъестественного.
Великий гражданин Америки
Жизнь Бенджамина Франклина связана с Филадельфией. Здесь и сегодня в центре города стоит старая ратуша. Когда-то она была весьма внушительным зданием, возвышавшимся над россыпью одно-двухэтажных домов и коттеджей. Сегодня старая постройка потонула среди поднявшихся стен из стекла, стали и бетона. И лишь бронзовый Уильям Пенн, основавший город в 1682 году, по-прежнему стоит на ратушной башне.
Рядом с Федеральным резервным банком и Фондовой биржей – Академия естественных наук, университет и Институт Франклина. Здесь, в одном из банкетных залов ратуши, в 1977 году был устроен необычный праздник в честь прославленного гражданина Филадельфии Бенджамина Франклина.
Вечером, когда темное небо усыпали звезды, проблескивающие даже сквозь туман электрического зарева, в ратуше собралось множество народа. Четверо кондитеров внесли на вытянутых руках грандиозный юбилейный торт, уставленный свечками. Свечей было так много, что в одну человеческую жизнь не вместилось бы такое количество лет. Тем временем торт поставили на стол, и человек с явно электротехническим образованием стал подключать его к электронной схеме с оптическим устройством, фотоэлементами, усилительными каскадами и реле. Все смотрели на часы. В назначенное время включился ток. Механическая часть системы пришла в движение. Она повернула оптическую трубу и нацелила ее на какую-то звезду. Прошла минута, другая, и двести с лишним свечей одновременно загорелись под общие аплодисменты и звон льда в бокалах…
Но, пожалуй, мне пора объяснить смысл проделанных манипуляций и всей церемонии в целом. Если отнять от 1977 года год рождения Бенджамина Франклина – 1706, получится цифра 271. На торте двести семьдесят одна свеча. Связь понятна? Но вот оптическое устройство, повернувшись, нацелилось на звезду, отстоящую от Солнечной системы на двести семьдесят один световой год. И когда луч света, родившийся одновременно с Франклином, добежал до земли, он попал в объектив, прошел через фотоэлемент и замкнул реле. С треском выскочившая из разрядников электрическая искра зажгла свечи…
Бенджамин Франклин (1706–1790)
Бенджамин Франклин родился в семье ремесленника, переселившегося на американские берега из Англии из-за преследований по религиозным убеждениям. В семье было семнадцать детей. Бенджамин – младший. И хотя к его отрочеству многие из братьев и сестер уже стали вполне самостоятельными людьми, мальчик не смог получить систематического образования. Он проучился в школе всего год, наловчившись за это время читать и считать, а потом поступил в типографию старшего брата, обязавшись по контракту проработать там бесплатно в течение восьми лет за обучение ремеслу книгопечатания. Одним из немногих удовольствий, выпадавших на долю мальчугана, было в ту пору чтение книжек да лихие запуски воздушных змеев над холмами небольшого полуострова в глубине Массачусетской бухты, где расположился город Бостон.
Отработав положенный срок, семнадцатилетним парнем Бен переехал в Филадельфию. И здесь дело у него пошло. Скоро он начал выпускать свою газету, занялся политикой и бизнесом. Природная любознательность сделала его начитанным и образованным человеком. А ясный практический ум позволил к тому же разбогатеть.
В двадцать пять лет Франклин открыл первую в США публичную библиотеку. В тридцать четыре года основал Пенсильванский университет, а еще три года спустя – Американское философское общество.
Франклину шел сорок первый год, и вряд ли он особенно задумывался над проблемами электричества. Как вдруг в город приехал некий доктор Спенсер, обещавший, как было указано в афишах, «прочесть лекцию об электричестве и показать слушателям потрясающие опыты». В те времена по городам североамериканских колоний Великобритании ездило немало всякого рода лекторов, знакомивших колонистов с новостями науки и магии, литературы и толкований Божественного Писания. Для жителей небольших провинциальных городов такие лекции служили немалым развлечением.
Бен Франклин был в этот вечер свободен. Он в компании приятелей гулял по городу и, возможно, собирался зайти в салун, когда у кого-то из друзей возникло предложение послушать заезжего лектора. На лекцию так на лекцию. Компания пребывала в отличном расположении духа, и все направления, как говорится, были для нее равновероятны.
Рослый и веселый, всегда полный юмора, Бен Франклин последним протиснулся в дверь. Возможно, втайне он рассчитывал подшутить и посмеяться над лектором. Но был зачарован, а потом и окончательно покорен бледными электрическими искорками, которые доктор Спенсер извлекал из повидавшей виды машины и лейденской банки. А когда он – здоровяк и силач, подпрыгнув от неожиданности, едва не свалился на пол, испытав «электрический удар», судьба его была решена. Богач, общественный и политический деятель, он семь последующих лет своей жизни отдал электрическим исследованиям. Что такое семь лет для обыкновенного человека? Ничтожный срок! Но Франклин был от природы исключительно талантливым человеком. И он успел за это время сделать столько, на что другому не хватило бы и семидесяти лет.
По своему характеру Франклин был практиком. На науку он смотрел как на подспорье человеку в его деятельности. Он занимался исследованиями по теплотехнике и изобрел экономичную «франклиновскую печь», изучал распространение скорости звука в воде и придумал оригинальный музыкальный инструмент. Назначенный почтмейстером сначала Филадельфии, а потом и всех тринадцати североамериканских колоний Англии, он заинтересовался вопросом: почему почтовые суда из Америки в Европу ходят быстрее, чем в обратном направлении, и, собрав записки и замечания китобоев Коннектикута, составил первую в истории науки карту течения Гольфстрим. Но ни одно из этих увлечений не шло даже в сравнение с тем рвением, с каким он отдался электрическим опытам.
Для начала он купил, изрядно поторговавшись, весь «кабинет» – все оборудование доктора Спенсера и увез к себе. Затем научился обращаться с электрической машиной и лейденскими банками и обнаружил, что если на заряженном кондукторе машины укрепить заостренный металлический прут, то электричество с кондуктора стекает постепенно, без искровых разрядов. Это было интересно.
Электрическая машина времен Франклина
Он всегда работал увлеченно. О результатах своих опытов писал в Лондон, члену Лондонского королевского общества Питеру Коллинсу, который тут же докладывал о них на заседаниях общества. Франклин установил, что в работе лейденской банки главная роль принадлежит вовсе не металлическим обкладкам, а диэлектрику – непроводящему веществу, разделяющему обкладки, и что заряды на обкладках банки равны друг другу и противоположны. Он писал, что, когда электричество передается внутренней обкладке банки, оно вытесняет из наружной обкладки на землю равное количество электричества, в результате чего банка оказывается заряженной.
Идеи Франклина были приняты весьма сочувственно европейскими учеными, не имевшими в то время никакой теории для объяснения заряда лейденской банки.
В письме от 1747 года Франклин предложил свою теорию электричества. Он считал, что существует некий электрический флюид – тончайшая жидкость, которая пронизывает все тело. Частицы электрического флюида отталкиваются друг от друга, но притягиваются частицами тел. При этом если в теле появляется избыток электрической жидкости, то оно оказывается наэлектризованным «положительно». Этим термином Франклин предлагал заменить «смоляное» электричество Дюфе. А если в теле существует недостаток электрического флюида, оно наэлектризовано «отрицательно». Отрицательным он предлагал называть «стеклянное» электричество Дюфе. Таким образом, единая электрическая жидкость как бы определяла два состояния тел – положительную и отрицательную электризацию. При этом предполагалось, что создавать электрическую жидкость ничто не может. Все дело только в ее перераспределении между телами.
Громоотвод на башенке дома
Франклин всегда интересовался метеорологией. И мысль о том, как защитить дома колонистов от пожаров, вызванных частыми грозами, не раз тревожила его практический ум. Увидев, как металлический штырь спокойно сводит электрический заряд с лейденской банки на землю, Франклин задумался: «Если считать молнию большой электрической искрой, то нельзя ли с помощью длинного острого металлического шеста разряжать тучи, как лейденские банки, сводя опасные заряды на землю?» Для этого прежде всего следовало убедиться, что небесное электричество и электричество, получаемое от машины, – одно и то же.
И в один из ветреных дней, когда низкие тучи предвещали грозу, Бен соорудил из шелкового платка большого воздушного змея и запустил его под облака. К концу бечевки он привязал металлический ключ, а к ключу, в целях безопасности, – шелковую ленту, за которую держался сам. По шелку электричество не передавалось.
Скоро веревка намокла. Где-то вдалеке громыхнул первый гром. Франклин осторожно поднес к ключу лейденскую банку, и длинная голубая искра клюнула центральный электрод. «Браво! Есть электричество! Я его отнял у неба!» Он заряжал одну банку за другой, убеждаясь, что небесное электричество, добытое змеем, ничуть не отличается от производимого трением. «Прекрасно! Больше я не позволю небесному огню сжигать дома и корабли, убивать людей и наносить ущерб обществу. Заостренные шесты сведут молнии на землю!» Франклин начал кампанию за повсеместную установку громоотводов.
Громоотвод изобрел Франклин. Правда, в литературе есть сведения, что уже в Древнем Египте жрецы ставили возле храмов обитые медью высокие шесты, которые отводили якобы молнию от храмовых кровель. Так это или нет, проверить сегодня трудно. Особенно если учесть, что Египет не лежит в полосе частых гроз. Правда, там они все-таки случаются. А вот в полярных районах, выше восемьдесят второй параллели северной широты и пятьдесят пятой – южной, гроз по статистике почти не наблюдается. В средних широтах число грозовых дней колеблется между двадцатью и сорока за год, а в тропиках, особенно в экваториальной зоне, дней с грозами бывает до ста пятидесяти за год! Впрочем, климат – штука сложная. Говорят, на острове Ява, что в Малайском архипелаге, общее число гроз за год достигает чуть ли не полутора тысяч. Здесь в течение суток они бушуют по нескольку раз, и день без грозы – большой праздник. Но даже если наши предки и умели устраивать грозозащиту, то нужно сказать, что ко времени Франклина успехи в этой области были прочно забыты.
Свою теорию громоотвода Франклин изложил в письме в Королевское общество от 17 сентября 1753 года. Он предлагал ставить возле домов заостренные железные прутья, поскольку острие станет «высасывать» электричество из облаков мало-помалу и не допустит образования молнии. Да и сама молния, если дать ей путь «надлежащей проводимости», спокойно уйдет в землю, не сжигая и не разрушая строений.
В Филадельфии к концу XVIII века громоотводы были поставлены на все крупные здания. Лишь на доме, принадлежащем французскому посольству, дипломаты никак не соглашались водрузить спасительный шест. И что же – словно в назидание, в 1782 году в него ударила молния, произведя значительные разрушения.
В конце концов даже те, кто не соглашался с выводами Франклина, вынуждены были признать полезность громоотводов. Люди кинулись в другую крайность. Металлические штыри и заостренные прутья устанавливались на каретах, дамы в Париже носили шляпки с громоотводами. Но лишь после того, как молния ударила в шпиль Петропавловского собора и зажгла его, началась эра строительства громоотводов для России.
Конструкция громоотвода Франклина
В Европе Лондонское королевское общество напечатало «электрические» письма Франклина отдельной книжкой, и она хорошо разошлась. Однако слишком много людей в Старом Свете занимались исследованиями атмосферного электричества, чтобы сразу принять на веру заключения «янки из-за океана».
Даже в Лондоне нашлись члены общества, утверждавшие опасность привлечения молний к крышам зданий путем установки на них заостренных шестов – громоотводов и посему предлагавшие надевать на острия шары… Только шары могли сделать молнию безвредной!
На континенте, бывало, крестьяне приписывали громоотводу засуху, поражающую их поля. Немало было и других вздорных мнений. Правда, время от времени сама природа подталкивала людей на скорейшее решение «острых» вопросов.
Французский ученый Доминик Араго в своей книге «Гром и молния» пишет: «Утром 18 августа 1769 года гром ударил в башню Святого Назария в городе Брешиа. Под основанием этой башни находился подземный погреб, в котором хранился порох, принадлежавший Венецианской республике. Огромная масса взрывчатки воспламенилась мгновенно, и шестая часть зданий прекрасного города была разрушена, а все остальное было потрясено так, что угрожало падением. При этом погибло три тысячи человек. Башня Святого Назария была вся подброшена на воздух и упала обратно на землю в виде каменного дождя. Обломки ее рассыпались на огромном расстоянии». Нет сомнений, что такие события весьма усиливали интерес к громоотводам в Европе.
Исследования атмосферного электричества ширились, захватывая все большее число ученых-естествоиспытателей в самых разных странах. Росло и количество опасных опытов по извлечению искр из наэлектризованных металлических шестов, установленных на крышах.
Хуже дело обстояло с теорией. Если отталкивание положительно заряженных тел выводы Франклина объясняли достаточно просто, то такое же отталкивание отрицательно заряженных тел объяснить не удавалось. Но Франклин не унывал.
Бен Франклин не только работал весело, но и весело отдыхал. «Ввиду того что наступает жаркая погода, когда электрические опыты доставляют мало удовольствия, мы думаем покончить с ними на этот сезон, завершив все довольно веселым пикником, – писал он в Англию, где у него было немало друзей. – На берегах реки Скулкилл искра, переданная с одного берега на другой без какого-либо проводника, кроме воды, зажжет одновременно на обоих берегах реки спиртовки… Индейка к нашему ужину будет умерщвлена электрическим ударом и зажарена на электрическом вертеле огнем, зажженным наэлектризованной банкой; мы выпьем за здоровье всех известных физиков. из наэлектризованных бокалов под салют орудий, стреляющих от электрической батареи…» Не этот ли стиль пытались возродить и почитатели ученого на празднике, описанном в начале рассказа?
Только семь лет занимался Франклин своими опытами. За это время он не оставлял и общественной деятельности. По его инициативе в Филадельфии возникла «Академия» – учебное заведение, состоящее из средней и высшей школы, был открыт первый в Америке общественный госпиталь. Его выбрали мировым судьей. А в период начавшейся войны между английскими и французскими колониальными войсками Франклин занимался организацией милиции своего штата. На конгрессе представителей колонии в Олбани Франклин предложил английской администрации план объединения федерации колоний в единое самоуправляющееся государство, но этот проект, естественно, не прошел. Оказавшись в оппозиции проанглийски настроенному губернатору, Франклин вынужден был ехать в Лондон, чтобы добиться от правительства метрополии хоть какого-то ограничения прав назначаемых оттуда чиновников. На этом его ученые занятия прервались. Он провел в Англии довольно долгое время. Потом возвратился туда еще раз. Писал политические памфлеты. Поехал с дипломатической миссией во Францию…
Последние годы жизни Франклин спокойно провел в кругу своей семьи. Много читал, интересовался наукой и поддерживал начинавшее развиваться аболиционистское движение за освобождение негров. Он был принципиальным противником рабства. И сегодня, подводя итоги этой славной жизни, согласимся, что на его памятнике вполне уместны слова: «Eripuit coelo fulmen, sceptrumque tirannis» – «Он отнял молнию у небес и власть у тиранов».
Господа профессоры Императорской Санкт-Петербургской академии наук
Все-таки это было очень удивительно: потереть кожей или суконкой обыкновенное, ничем не примечательное холодное стекло – и извлечь из него искру, напоминающую миниатюрную молнию! В середине XVIII века трудно было даже представить себе что-нибудь более впечатляющее. Немудрено, что столько людей самого разного чина и звания занимались электрическими опытами. Цель у всех была одна – получать от машин как можно более мощные искры. Однако, как ни старались изобретатели совершенствовать свои машины, получались они довольно слабосильными. Да и непонятно было, когда вообще следовало считать тело наэлектризованным. Никто не знал, как измерять количество электрической материи.
Здание Императорской академии наук в Санкт-Петербурге
По доскам тротуара набережной Васильевского острова в Санкт-Петербурге идут двое. Держат путь от здания Академии наук к Первой линии.
Развеваются на ветру полы голубых академических кафтанов с черными отворотами. В желтых пуговицах играют лучи низкого солнца. Один из идущих высок, телосложения крепкого и шагает широко, размашисто. Второй – более субтилен и идет аккуратнее. Он инстинктивно следит за тем, чтобы пыль от башмаков не садилась на белый жилет и панталоны!… Это – господа профессоры академии. Первый – Михаил Васильевич Ломоносов, второй – друг его любезный, профессор Георг Вильгельм Рихман, из немцев. Оба с утра присутствовали на заседании академического собрания, а теперь поспешают домой…
Михаил Васильевич Ломоносов (1711–1765)
В 1744 году академическое собрание Петербургской академии наук обсудило обращение Леонарда Эйлера, призывающее заняться исследованием причин электрических явлений, и приняло решение: «Произвести также и здесь исследования над явлениями электричества и тщательно изучить все сочинения, написанные по этому вопросу, а те, коих нет здесь, как можно скорее добыть.»
Выполнение этого задания и принял на себя профессор Рихман. И первый вывод, который он сделал после предварительных опытов в «электрической каморе» – лаборатории при академии, – заключался в необходимости научиться измерять «силу электрическую». Ибо лишь зная оную, перейти сможет электричество из области «кунштюков» в область науки.
В опытах друга и в обсуждении результатов горячо участвовал и Ломоносов. Рихман составил программу работ. Ломоносов перевел ее на русский язык. Рихман построил первую в России электрическую машину. Ломоносов помог ему наметить круг вопросов, на которые надлежит дать ответы.
Георг Рихман (1711–1753)
В 1745 году Рихман сконструировал «электрический указатель» из длинной, примерно полуметровой, линейки и угловой шкалы.
Вдоль линейки висела льняная нить. Ломоносов писал, что это была точно «отвешенная нить» и по углу отклонения ее от вертикали можно было измерять электрическую силу. «Подобный указатель является надежным прибором для распознания, больше или меньше градус электричества в той или иной электрической массе» – так характеризовал свой прибор сам изобретатель. Правда, прибор годился только для относительных измерений. Рахман писал, что сила воздействия между нитью и линейкой с увеличением расстояния убывала «по некоторому пока еще не известному закону». Он же делал вывод: «Я еще до тех пор не буду утверждать, что этим указателем можно точно измерять электричество, пока не будет развита теория электрического вихря».
С этого времени различные приборы для оценки электрической силы стали появляться и в других странах. Аббат Нолле вместо одной нити стал применять в своем электроскопе две. А англичанин Джон Кантон добавил к ним еще и бузинные шарики. Лет через двадцать, для уменьшения внешних помех, физики стали заключать подобные измерительные приборы в банки и коробки, под стекло. Получились электроскопы и электрометры.
Теперь исследователи по отклоняющимся нитям или листочкам могли судить, в каком теле накопилось больше электричества, а в каком меньше. Научились делить накопленное электричество на порции. Процесс деления происходил так: изолированным ненаэлектризованным металлическим шариком исследователь касался другого, такого же по размерам, так же изолированного, но наэлектризованного. Электрический заряд делился пополам, и электроскоп показывал, что на обоих шариках собралось одинаковое количество электричества.
В дальнейшем количество электричества, содержащееся в теле, стали называть электрическим зарядом. Два электрических заряда, или два количества электричества, считались одинаковыми, если при прочих равных условиях они оказывали на одно и то же тело одинаковое воздействие, например, раздвигали листочки электроскопа на одинаковый угол.
Весть об опытах Франклина с воздушным (или атмосферным) электричеством разнеслась по всем странам. В России об этом узнали впервые из статьи, переведенной из Кельнской газеты и помещенной в «Санкт-Петербургских ведомостях» в 1752 году. Вот что там было написано:
«Никто бы не чаял, чтоб из Америки надлежало ожидать новых наставлений о электрической силе, а однако, учинены там наиважнейшие изобретения. В Филадельфии, в Северной Америке, господин Вениамин Франклин столь далеко отважился, что хочет вытягивать из атмосферы тот страшный огонь, который часто целые земли погубляет. А именно делал он опыты для изведания, не одинакова ли материя молнии и электрической силы, и действие догадку его так подтвердило, что от громовых ударов следующим образом охранять себя можно: на вершинах строений или кораблей надлежит утвердить железные востроконечные прутья, перпендикулярно поставленные, вышиною от 10 до 12 футов и для охранения от ржи (то есть ржавчины – А. Т.) позолоченные; а от нижнего конца прутьев спустить проволоку к подошве строения наземь или от мачтового каната на кораблях.
Электроскоп Кавалло XVIII века
Как чинили сей опыт в марлийском саду железным прутом, вышиною в 40 футов поставленным и на электризованном теле утвержденным, во время грома, который шел через то место, где был прут, то бывшие при том персоны вытянули такие искры и движения, которые подобны тем, кои производятся обыкновенною электрической силою. В Париже 18 мая из утвержденного на 99 футов вышиною и в виноградном саду поставленного прута вытягивали многие искры через полчаса и более в то самое время, как густая туча стояла над тем местом. Сии искры совершенно походили на исходящий из фузеи огонь и причиняли такой же стук и такую же опасность. Другими опытами то же подтверждено, и явилось, что помощью востроконечных прутов у громовых туч огонь отнять можно».
Спустя некоторое время в той же столичной газете была напечатана еще одна статья. В ней говорилось:
«Понеже в разных ведомостях объявлено важнейшее изобретение, а именно: что электрическая материя одинакова с материей грома, то здешний профессор физики экспериментальной г. Рихман удостоверил себя о том и некоторых смотрителей следующим образом. Из середины дна бутылочного выбил он черепок-иверень и сквозь бутылку продел железный прут длиной от 5 до 6 футов, толщиною в один палец, тупым концом, и заткнул горло ее коркой. После велел он из верхушки кровли вынуть черепиц и пропустил туда прут, так что он от 4 до 5 футов высунулся, а дно бутылки лежало на кирпичах. К концу прута, который под кровлею из-под дна бутылочного высунулся, укрепил он железную проволоку и вел ее до среднего апартамента все с такою осторожностью, чтобы проволока не коснулась никакого тела, производящего электрическую силу. Наконец, к крайнему концу проволоки приложил он железную линейку, так что она перпендикулярно вниз висела, а к верхнему концу линейки привязал шелковую нить, которая с линейкой параллельна, а с широчайшею стороною линейки в одной плоскости висела.
Описание сих приготовлений к опыту читал он при исследовании объявленного отдаления грома от строения в начале сего июля месяца в академическом собрании членам, и начал уже с начала оного месяца по вся дни следовать, отскочит ли нить от линейки и произведет ли потому какую электрическую силу, токмо не приметил ни малейшей перемены в нити. Чего ради с великою нетерпеливостию ожидал грому, который 18 июля в полдень и случился.
Гром, по-видимому, был не близко от строения, однако ж он после первого удара тотчас приметил, что шелковая нить от линейки отскочила, и материя с шумом из конца линейки в светлые искры рассыпалась и при каждом осязании причиняла ту же чувствительность, какую обыкновенно производят электрические искры. У некоторых, державших линейку, шло потрясение по всей руке. Шум исходящей материи был сначала столь велик, что некто, бывший при том на несколько шагов от линейки, шум мог слышать. Во время дождя примечены на линейке электрические искры, также и после грома.
Все сие продолжалось больше полутора часа, и электрические действия были то больше, то меньше.
В третьем часу пополудни окончилась электрическая сила, и более не слышно было, чтобы гремело. Посему не надобно к тому опыту ни электрической машины, ни электризованного тела, но гром совершенно служит вместо электрической машины!…
…Итак, совершенно доказано, что электрическая материя одинакова с громовою материею, и те раскаиваться станут, которые преждевременно маловероятными основаниями доказывать хотят, что обе материи различны».
В июле 1752 года в «Санкт-Петербургских ведомостях» появилось еще одно сообщение об опытах Рихмана: опыты с электричеством чрезвычайно интересовали тогдашнее русское общество.
«Сего июля 21 числа г. профессор Рихман имел паки случай примечать электрическую силу громовых туч при некоторых г.г. профессорах и членах академических, также при других ученых и академиках.
В пятом часу пополудни, хотя громовая туча столь же близко нашла, как прежде, однако электрические явления на линейке не в такой силе, как 18 числа, оказались. К цепи приложил он клейстов, или мушенброков образец, чтобы умножить электрическую силу, а именно, соединил он железную проволоку с цепью, пропустил в склянку, по горло водою налитую. Горло у склянки было сухо. Склянку он поставил в сосуд, водою налитый, а в судно с водою положил кусок железа. Когда сие железо держали одною рукою, а другою трогали электризованную громом линейку, то чувствовали часто потрясение в обеих руках, так же как при сих обстоятельствах в художественном электризовании обыкновенно делается.
Итак, утверждает он и сие, что материя грома не разнится и в сем от электрической материи. И понеже все тела от распространенной электрической силы электризованы быть могут, то должны все-таки тела, например все металлы, люди, вода, лед, дерево и проч., с проволокою соединенные и надлежащим образом укрепленные, материею грома быть электризованы, и понеже из проволоки исходят подлинные электрические искры, то от сих искр должен спирт винный, самый крепкий, нефть, спирт Фробениев и прочее загореться; и понеже г. профессор Рихман художественным электрическим действием делает блещащимися имена и фигуры, то и натуральным или электрическим действием грома могут блещащимися учинены быть литеры и фигуры. Итак, гром, сколь он ни страшен, может быть удовольствием и потехою».
Здесь «Ведомости» предлагают использовать электричество для столь любимой в России иллюминации и «огненной потехи» – фейерверков. В те годы никто из естествоиспытателей толком не представлял себе всей опасности производимых экспериментов, хотя опыты по умерщвлению животных проделывались в разных странах. Не существовало и никаких рекомендаций по технике безопасности. Все это привело к тем трагическим последствиям, которыми завершились опыты Георга Рихмана в России.
26 июля 1753 года над Санкт-Петербургом собралась гроза. Рихман и Ломоносов приготовились «чинить электрические воздушные наблюдения с немалою опасностию для жизни». Дом Ломоносова стоял на Второй линии Васильевского острова. Рихман жил неподалеку, на пересечении Пятой линии и Большого проспекта. И вот загрохотали первые раскаты.
Образование воздушных потоков и грозовых облаков. Из книги М. В. Ломоносова
«Что я ныне к вашему превосходительству пишу, за чудо почитайте, для того, что мертвые не пишут, – так начинает Михайла Ломоносов описание этого эксперимента в письме к своему покровителю Ивану Шувалову, – я не знаю еще или по последней мере сомневаюсь, жив ли я или мертв. Я вижу, что господина профессора Рихмана громом убило в тех же точно обстоятельствах, в которых я был в то же самое время. Сего июля 26 числа в первом часу пополудни поднялась громовая туча от норда. Гром был нарочито силен, дождя ни капли. Выставленную громовую машину посмотрев, не видел я ни малого признаку электрической силы. Однако, пока кушанье на стол ставили, дождался я нарочитых электрических из проволоки искр, и к тому пришла моя жена и другие; и как я, так и они беспрестанно до проволоки и до привешенного прута дотыкались, за тем что я хотел иметь свидетелей разных цветов огня, против которых покойный профессор Рихман со мною споривал. Внезапно гром чрезвычайно грянул в то самое время, как я руку держал у железа и искры трещали. Все от меня прочь бежали. И жена просила, чтобы я прочь шел. Любопытство удержало меня еще две или три минуты, пока мне сказали, что эти простынут, а потом и электрическая сила почти перестала. Только я за столом посидел несколько минут, внезапно дверь отворил человек покойного Рихмана, весь в слезах и в страхе запыхавшись. Я думал, что его кто-нибудь на дороге бил, когда он ко мне был послан; он чуть выговорил: профессора громом зашибло».
В официальном описании случившегося говорилось о том, что в этот день, то есть 26 июля 1753 года, заметив, что собирается гроза, Рихман хотел показать граверу Соколову сущность своих электрических опытов. Соколов должен был изобразить их на виньетке к речи Рихмана, которую тому предстояло произнести на торжественном собрании академии…
В сенях дома Рихмана у окошка «стоял шкаф, вышиною в 4 фута, на котором учреждена была машина для примечания электрической силы, называемая указатель электрической, с железным прутом толщиной в палец, а длиною в 1 фут, которого нижний конец опущен был в наполненный отчасти медными опилками хрустальный стакан. К сему пруту с кровли оного дома проведена была сквозь сени под потолком тонкая железная проволока. Когда г. профессор, посмотревши на указателя электрического, рассудил, что гром еще далеко отстоит, то уверил он грыдоровального мастера Соколова, что теперь нет еще никакой опасности, однако когда подойдет очень близко, то-де может быть опасность.
Вскоре после того как г. профессор, отстоя на фут от железного прута, смотрел на указатель электрической силы, увидел помянутый Соколов, что из прута без всякого прикосновения вышел бледно-синеватый огненный клуб, с кулак величиною, шел прямо ко лбу г. профессора, который в то самое время, не издав ни малого голосу, упал назад, на стоящий позади его у стены сундук. В самый же тот момент последовал такой удар, будто бы из малой пушки выпалено было, отчего и оный грыдоровальный мастер упал на землю и почувствовал на спине у себя некоторые удары, о которых после усмотрено, что оные произошли от изорванной проволоки, которая у него на кафтане с плеч до фалд оставила знатные горелые полосы.
Как оной грыдоровальной мастер опять встал и за оглушением оперся на шкаф, то не мог он от дыму видеть лицо г. профессора и думал, что он только упал, как и он; а понеже, видя дым, подумал он, что молния не зажгла ли дому, то выбежал еще в беспамятстве на улицу и объявил о том стоящему недалеко оттуда пикету.
Гибель профессора Рихмана от удара шаровой молнии
Как жена г. профессора, услышавши такой сильный удар, туда прибежала, то увидела она, что сени дымом, как от пороху, наполнены. Соколова тут уже не было, и как она оборотилась, то приметила, что г. профессор без всякого дыхания лежит навзничь на сундуке у стены. Тотчас стали его тереть, чтоб отведать, не оживет ли, а между тем послали по г. профессора Краценштейна и по лекаря, которые через десять минут после удару туда пришли и из руки кровь ему пустили; однако крови вышло только одна капелька, хотя жила, как то уже усмотрено, и действительно отворена была. Биения же жил и на самой груди приметить невозможно было. Г. Краценштейн несколько раз, как то обыкновенно делают с задушившимися людьми, зажал г. Рихману ноздри, дул ему в грудь, но все напрасно».
Смерть Рихмана потрясла ученый мир. Церковь же потребовала немедленного запрещения «богопротивных опытов», уверяя, что Рихмана постигла «Божья кара». Интересно, что Ломоносов заранее предполагал возможность такого вывода. И в письме к Шувалову сделал такую приписку: «…чтобы сей случай не был протолкован противу приращения наук, всепокорнейше прошу миловать науки…»
С речами и статьями, доказывавшими, что смерть Рихмана не есть «Божеское наказание», выступали многие ученые в разных странах.
Тем не менее канцелярия Петербургской академии наук запретила даже упоминать слово «электричество» на предстоящем торжественном собрании. Все эти меры вызвали временное ослабление интереса к электрическим явлениям. Ломоносов отдал немало сил для продолжения начатых в России работ. Он пытался найти способы безопасного наблюдения и измерений «электрической громовой силы», написал сочинение «Слово о явлениях воздушных, от электрической силы происходящих». По его настоянию академия объявила международный конкурс на лучшую теорию электричества.
«Электрическая стрела» на крыше дома Ломоносова
К 1756 году, когда окончился срок конкурса, предлагавшего «сыскать подлинную электрической силы причину и составить точную ее теорию», в академию поступило довольно много работ. Лучшей среди всех были признаны мемуары, присланные из Берлина и подписанные именем Иоганна Эйлера, сына великого математика. Сам Леонард Эйлер права участвовать в конкурсе не имел, поскольку являлся членом Собрания Петербургской академии. Однако после того как результаты конкурса были объявлены, Эйлер признался в обмане. Мемуары принадлежали ему. Свои рассуждения Эйлер строил на предположении, что сверхтонкая материя, создающая электрические силы, есть не что иное, как светоносный эфир. И все известные исследователям электрические явления относил за счет «нарушений равновесия в эфире», сгущения его или разрежения вблизи электризуемых тел. Таким образом, он обходился без введения «специальной электрической материи» Франклина.
К тому же 1756 году относится незаконченная и неопубликованная диссертация Ломоносова «Теория электричества, разработанная математическим способом». Ломоносов, как и Эйлер, исходил из эфира, но электризацию тел предполагал результатом вращательного движения частиц эфира внутри самих тел и в окружающем их пространстве.
Обе теории были принципиально новыми, потому что сводили причину электрических явлений не к свойствам мифической электрической жидкости, а к специфическим формам движения эфира, признанного реально существующим наукой того периода. Правда, отрицая движения электрической жидкости, теории Эйлера и Ломоносова носили чисто электростатический характер и приводили к неправильному представлению о грозозащите и об устройстве громоотводов.
Ломоносов писал о двух способах защиты от грозы. Первый заключался в сооружении на пустырях и на крышах зданий тщательно изолированных от земли «электрических стрел» – «дабы ударяющая молния больше на них, нежели на головах человеческих и на храминах, силы свои изнуряла».
Второй способ грозозащиты русский академик видел в «потрясении воздухом». Это была дань старым воззрениям, гласившим, что отогнать грозу можно колокольным звоном.
«Белые пятна» на карте науки
Казалось бы, люди, занявшиеся изучением электрических сил, в первую очередь должны были обратить внимание на атмосферное электричество. Ведь оно, как никакое другое, ближе всего – под руками. Однако на деле вышло совсем не так. Долгое время никому даже в голову не приходило, что молния и крошечная искорка, прыгающая с натертого куска янтаря, – явления одной природы, разные лишь по своему масштабу. Немалую роль в этом сыграло заблуждение древних философов, убежденных в том, что мир Земли не имеет ничего общего с миром Неба. Лишь в XVIII веке наступило время объединить наблюдаемые явления и уверенно заявить о том, что небесное и земное электричество – явления одной природы. И только в XX столетии люди наконец уяснили себе механизм образования грозы.
Что такое молния? Электрическая искра, возникающая между разноименно заряженными облаками или между облаком и землей. Гром – треск этой искры. В канале молнии воздух очень быстро нагревается, а нагревшись, расширяется, как при взрыве. Возникают звуковые колебания, воспринимаемые нами как гром.
Возникает вопрос: откуда появляются электрические заряды в атмосфере? Вы, наверное, не раз слышали об ультрафиолетовом и корпускулярном излучении Солнца. Проникая в верхние слои атмосферы, это излучение разбивает нейтральные молекулы воздуха на заряженные частицы – ионы, ионизирует воздух. То же действие оказывают и космические лучи, пронизывающие всю толщу атмосферы. А у самой поверхности земли воздух подвергается атакам излучения радиоактивных элементов, которые в изобилии содержатся в земной коре.
В конце XIX века ученые пришли к выводу, что в атмосфере Земли на высоте примерно шестидесяти километров начинается ионизованная область – ионосфера, проводящий слой атмосферы, который, как скорлупой, охватывает планету. Это позволяет грубо приближенно рассматривать земную поверхность и ионосферный слой как обкладки конденсатора с разностью потенциалов около 300 кВ. В районах ясной погоды этот природный конденсатор постоянно разряжается, поскольку ионы под действием сил электрического поля уходят вниз к Земле. А вот в районах грозовой деятельности картина иная. Считается, что в каждый момент времени грозой охвачен в среднем примерно 1 % земной поверхности. В этих районах мощные токи текут снизу вверх, компенсируя «разряд» в «ясных» районах. Таким образом, грозовые облака – это не что иное, как природные электрические генераторы, поддерживающие в равновесии всю систему сложного электрического хозяйства во всеземном масштабе.
Если вспомнить уроки физики в школе, то и сам механизм образования грозы перестает быть тайной: мощные вертикальные потоки поднимают вверх влажный теплый воздух. Наверху воздух расширяется и при этом охлаждается. Водяной пар конденсируется в капельки воды, которые собираются в кучевые облака. Давление у земли понижается, воздух с периферии устремляется к центру. Возникает ветер. Вот и готова первая стадия грозы.
Вторая стадия начинается с выпадения дождя. На высоте в облаке появляются ледяные кристаллы. Сильные вихри перемешивают наэлектризованные частицы облака, возникают искры-молнии, гремит гром. Восходящие и нисходящие потоки воздуха крутят водяные струи ливня то в одну, то в другую сторону. Вот когда гроза в разгаре!
А потом наступает стадия разрушения грозы. Во всей ее области развиваются нисходящие потоки воздуха.
Атмосферный конденсатор из грозовых туч
Не получая больше от земли ни влаги, ни тепла, гроза затихает. Грозовое облако тает. Ветры из сходящихся превращаются в расходящиеся. «Вылившийся» с высоты холодный воздух, свежий, напоенный озоном, говорит о прекращении грозы.
Вот так! Обыкновенный феномен природы. Правда, не следует забывать, что для такого вот бесстрастного объяснения понадобились не годы, а столетия страха, мифов, а потом упорного труда собирания фактов и их осмысления. Понадобились думы и рассказы старейшин, колдовские действия магов и жрецов, размышления философов и, наконец, опыты естествоиспытателей. Опыты с неизвестным, опыты, сопряженные со смертельной опасностью, и все-таки – опыты…
В одной из книг по метеорологии в разделе «Возникновение грозы» написано: «В настоящее время хотя причины образования всех видов гроз и неизвестны точно, все же сами грозы уже настолько изучены, что можно указать основные явления, происходящие при грозе.» Главное в этой фразе – ее начало, признающее, что и по сей день точные причины образования гроз нам неизвестны.
Молнии бывают не только в грозовых облаках. Вулканологи, изучающие извержения, много раз отмечали молнии в облаках вулканического пепла. Мир был взволнован сообщениями о катастрофических взрывах на японских супертанкерах. Самое необычное заключалось в том, что случались они, как правило, во время промывки их колоссальных танков сильной струей воды… Одним из объяснений является предположение, что при промывке возникали облака из электрически заряженных нефтеводяных капель. Создавалось электрическое поле с высокой напряженностью и благоприятные условия для образования электрического разряда…
Не может не поражать удивительная способность атмосферы накапливать и удерживать электрический заряд. Сегодня мы знаем, что земля, земная поверхность заряжена всегда отрицательно. В атмосфере содержатся положительные объемные заряды, плотность которых уменьшается с высотой. В целом же для мирового пространства Земля с ее атмосферой, по-видимому, электрически нейтральное тело.
Ежегодно над земным шаром бушует около сорока пяти тысяч гроз. Различные специалисты приводят разные цифры, но это не принципиально. Примерно каждые четыре секунды где-то сверкает молния. И если учесть, что средняя гроза по потенциальной мощности может быть сравнима с атомной бомбой, то просто плакать от бессилия хочется – столько энергии в мире пропадает зря!
Ученые много знают о грозах. Их изучают с земли, фотографируют из космоса со спутников. Их изучают изнутри. Самолеты, начиненные измерительной аппаратурой, кружатся около эпицентра грозы. Приборы фиксируют силу заряда, напряженность электрического поля, степень ультрафиолетового и рентгеновского излучений при блеске молний.
В период с 1928 по 1933 год три швейцарских физика – Браш, Ланж и Урбан – решили попробовать использовать энергию молний для своих опытов. На горе Дженерсо, где атмосфера всегда щедро насыщена электричеством, они подвесили на высоте около восьмидесяти метров над землей металлическую сетку, которая должна была собирать из туч положительные заряды. Очевидцы рассказывали, что это было страшное устройство, работа с которым требовала отчаянного мужества. Сеть исправно работала, собирая заряды и повышая свой потенциал. Когда он достигал максимума, воздушный промежуток с оглушительным треском пробивала огненная искра длиной более четырех метров! Разряд длился примерно сотую долю секунды, а сила тока при этом достигала десятков тысяч ампер!
В один из недобрых дней во время опасного эксперимента от разряда такой молнии, пойманной в сеть, погиб Курт Урбан, после чего эксперименты на горе Дженерсо прекратились. Правда, прошло совсем немного времени, и они возобновились в других местах. В основном они велись по военным ведомствам.
Специалисты научились и на земле, в лабораторных условиях, получать искусственные молнии. И все-таки. в образовании молнии есть еще немало загадочного для науки. Судите сами: критическая напряженность поля, при которой в лабораторных условиях возникает электрическая искра, равна примерно 3000 кВ/м. А в природе достаточно 200–300 кВ/м. Как же возникают молнии? Точного ответа на этот вопрос пока у науки нет!
Как-то раз в завязавшемся разговоре с приятелями-физиками услышал я любопытное суждение: «Самым энергоемким аккумулятором относительно единицы массы была бы шаровая молния.»
Шаровая молния – редко встречающееся явление. Она выглядит как довольно устойчивый светящийся шар размером от теннисного до футбольного мяча. Образуется обычно в грозу следом за ударом линейной молнии. Состоит же шаровая молния предположительно из неравновесной плазмы и существует от одной секунды до нескольких минут. С тех пор как люди перестали видеть в явлениях природы «гнев Божий», о шаровой молнии написано множество заметок, статей, книг, и все равно никто из физиков точно не знает, что это такое.
Одним из первых ученых, грамотно описавших это явление, был Араго. Правда, в своей статье он больше спрашивал, чем объяснял. И в конце рассуждений с грустью констатировал: «Как и где образуются эти скопления весомой материи, сильно пропитанные веществом молний? Какова их природа?.. По этому поводу в науке существует пробел, который необходимо заполнить». Эти слова написаны в книге «Гром и молния» в середине XIX столетия. В 1885 году книга французского ученого была переведена и издана в Петербурге.
Доминик Франсуа Араго (1786–1853)
Араго полагал, что шаровая молния – это шар с гремучим газом – соединением азота с кислородом, – насквозь пропитанный «веществом молнии». Такой шар, по мнению ученого, возникал в грозовых облаках, заряжался наподобие конденсатора электричеством и падал на землю. Изолятором, или диэлектриком, в таком конденсаторе могли служить слои сухого, уплотненного электрическими силами воздуха между заряженными оболочками. Когда осуществлялся «пробой» изоляции, искра поджигала гремучие газы – и шар взрывался. Если же «пробоя» не происходило, электрическая энергия могла тихо «стечь» с шара – и он исчезал. Было еще много теоретических гипотез о природе этого загадочного явления. Одни авторы считали, что шаровая молния несет в себе запас энергии. Другие, напротив, предполагали, что источник энергии шаровой молнии находится вне ее оболочки…
В 1936 году в редакцию английской газеты «Дейли мейл» пришло письмо одного читателя. Вот что он писал:
«Сэр! Во время грозы я видел большой раскаленный шар, спустившийся с неба. Он ударил в наш дом, перерезал телефонные провода, зажег оконную раму и затем исчез в кадке с водой, стоявшей под окном. Вода кипела в течение нескольких минут, но когда она достаточно остыла, чтобы можно было поискать шар, я ничего не смог обнаружить в бочке.
У. Моррис. Дарстоун, Херфорд».
Королевский астроном, которого попросили прокомментировать это письмо, сообщил: «По-видимому, то, что видел ваш корреспондент, представляет собой очень редкое явление, известное под названием. шаровой молнии.»
Специалисты подсчитали примерную энергию, затраченную на кипячение воды в кадке. Получилось от 1 до 3 кВт · ч. Это, в свою очередь, позволило оценить удельную энергоемкость шаровой молнии как минимум в 100 кВт · ч.
Похожий случай наблюдал в Закарпатье некто С. Мах. «В августе 1962 года, – писал он в письме, – около 11–12 часов вечера в корыто с водой для скота упала шаровая молния размером с теннисный мяч. Она светилась цветами радуги в течение около 10 секунд. Вода из корыта почти полностью выкипела, на дне лежали сварившиеся лягушки. Размер корыта 0,3 х 2,5 м. Глубина слоя воды – 15 см. В двух других корытах также были обнаружены сварившиеся лягушки».
Шаровая молния на крестьянской ферме
В этом случае описываемая шаровая молния должна была иметь значительно большую удельную энергоемкость. Масса выкипевшей воды равнялась примерно ста килограммам.
Из чего же должна состоять шаровая молния, чтобы произвести такое действие? Это наверняка не «горючее вещество», потому что тогда оно должно было бы обладать фантастической эффективностью. Напомню, что даже такое «идеальное горючее», как газ ацетилен, имеет энергоемкость во много раз меньше.
Ученые выдвигали множество гипотез о природе шаровой молнии. И каждую из них время и новые факты низводили с пьедестала. «Яков Ильич Френкель был человеком, которого просто оскорбляло существование непонятных физических явлений, – пишут И. Имянитов и Д. Тихий в книге «За гранью законов науки», посвященной шаровой молнии. – Широко эрудированный физик, он обладал удивительной способностью сопоставлять весьма отдаленные области знания и в то же время легко отвлекаться от досадных мелочей, часто заслоняющих основные черты явления».
Он считал шаровую молнию вихрем из смеси твердых частиц дыма и пыли с химически активными газообразными продуктами, которые образуются в результате удара обычной молнии. Такой вихрь из раскаленных частиц ярко светится. А циркуляция ионов в нем приводит к возникновению сильного магнитного поля, которое стягивает весь клубок в шар и способствует сохранению его формы. Многочисленные наблюдатели отмечают «любовь» шаровых молний к печным трубам и дымоходам. Есть даже свидетельства появления огненных шаров зимой, во время метелей и снегопадов. Не значит ли это, что для существования шаровой молнии необходимы твердые частицы дыма и сажи, пыли и снежинок? Кроме того, после взрыва – разряда шаровой молнии – в воздухе остается дымок с острым запахом.
Яков Ильич Френкель (1894–1952)
Но и по расчетам Френкеля энергоемкость шаровой молнии оказывалась весьма незначительной. Так что, скорее всего, теория, основывающаяся на энергии горения газов, для объяснения природы шаровой молнии не годится. Придется вернуться к гипотезе чисто электрической природы этого явления. И такое предположение рассматривалось учеными.
В 1960 году появилась статья Е. Хилла, в которой он сравнивал шаровую молнию с миниатюрным грозовым облаком, электрические заряды в котором разделены ударом обычной линейной молнии. В небольшом объеме собираются сгустки электрических зарядов различных знаков. Представим себе шаровую молнию, состоящую, как матрешка, из вложенных друг в друга разноименно заряженных слоев. Получится сферический многослойный конденсатор. Но его энергоемкость тоже оказывается очень незначительной, в тысячу раз меньше даже рассчитанной Френкелем. Между тем по причиненным разрушениям взрыв шаровой молнии приравнивается к взрыву «от сотен граммов до 20 кг тринитротолуола». Это весьма солидный заряд взрывчатки.
Понятно, что такие свойства шаровой молнии не могли не привлечь к ней внимания тех, кто занят разработкой нового оружия. Еще в декабре 1960 года в американском журнале «Радио. Электроника» появилась статья: «Шаровая молния против ракет». В ней шло популярное объяснение оригинальной гипотезы советского физика Петра Капицы, выдвинутой им в 1955 году. Он писал: «Если в природе не существует источников энергии, еще нам не известных, то на основании закона сохранения энергии приходится принять, что во время свечения к шаровой молнии непрерывно подводится энергия, и мы вынуждены искать этот источник энергии вне объема шаровой молнии».