[231]. Кроме того, Мортон обнаружил дефицит порфириновых ферментов у большинства пациентов с электрочувствительностью и пришел к выводу, что электрическая и химическая чувствительность – это проявления одной и той же болезни. Порфирия, показал Мортон, – это не крайне редкая болезнь, как считается сейчас: она поражает не менее пяти или даже 10 % населения мира[232].
Мортон – смелый человек. В мире «редкой болезни» порфирии доминирует горстка клиницистов, которая контролирует практически все исследования и выдачу грантов в своей маленькой, выродившейся области. Они диагностируют порфирию только во время острых приступов с тяжелыми неврологическими симптомами, игнорируя более мягкие, вялотекущие случаи. Они обычно не ставят диагноз, пока уровень порфирина в моче или стуле не превысит нормальный в пять или десять раз. «Это просто глупо, – писал Мортон в 1995 г. – Все равно что диагностировать диабет только у тех, у кого начался кетоацидоз, а коронарную недостаточность – только у тех, кто перенес инфаркт миокарда»[233].
Более высокий процент, полученный Мортоном, сходится с теми цифрами, что получены более века назад, – с процентом пациентов, заболевших после приема снотворного средства сульфонала. Кроме того, сходится он и с найденным в 1960-х гг. «фиолетовым фактором», веществом, которое окрашивается в лавандовый цвет и содержится в моче не только больных порфирией, но и 5–10 % населения[234]. Фиолетовый фактор в конце концов был идентифицирован как продукт распада порфобилиногена, одного из предшественников порфирина[235]. Наконец, Мортон обнаружил – что согласуется с недавними данными из Англии, Нидерландов, Германии и России, – что устойчивые неврологические проблемы наблюдаются во время хронической, вялотекущей фазы всех типов порфирии – даже тех типов, которые, как ранее считалось, вызывают только поражение кожи[236].
Ганс Гюнтер, немецкий врач, который в 1911 г. дал порфирии ее название, писал, что «подобные больные страдают от нейропатии, бессонницы и нервной раздражительности»[237]. Мортон вернул нас к исходному взгляду на порфирию: это не просто довольно распространенная болезнь, но болезнь, чаще всего существующая в хронической форме со сравнительно мягкими симптомами. А главная ее причина – синтетические химикаты и электромагнитные поля, загрязняющие нашу современную среду.
Порфирины играют центральную роль в нашем рассказе не только из-за болезни, которая называется «порфирия» и которой болеют лишь несколько процентов населения, но и потому, что они напрямую связаны с современной эпидемией заболеваний сердца, рака и сахарного диабета, которые поразили половину мира, и потому, что само их существование – это напоминание о роли, которую электричество играет для самой жизни, роли, которую медленно прояснили несколько храбрых ученых.
В детстве Альберт Сент-Дьёрдьи ненавидел книги, и, чтобы сдать экзамены, ему пришлось нанять репетитора. Но позже, окончив в 1917 г. Будапештскую медицинскую школу, он превратился в одного из величайших мировых гениев в области биохимии. В 1929 г. он открыл витамин C, а в следующие несколько лет описал большинство этапов клеточного дыхания – эта система ныне известна как цикл Кребса. За эти два открытия он в 1937 г. получил Нобелевскую премию по физиологии и медицине. Следующие два десятилетия он потратил на изучение работы мышц. Эмигрировав в США и поселившись в Вудс-Холе, штат Массачусетс, в 1954 г. он был награжден премией Альберта Ласкера за свои открытия в этой области.
Но, возможно, его самым важным открытием стало то, которое менее всего известно, хотя этой теме он посвятил почти полжизни. Ибо 12 марта 1941 г. во время лекции в Будапеште он храбро заявил своим коллегам, что дисциплина биохимия устарела и нуждается в обновлении для XX в. Живые организмы, сказал он им, – это не просто мешки с водой, в которой, словно крохотные бильярдные шарики, плавают молекулы, устанавливая химические связи с другими бильярдными шариками, когда сталкиваются с ними. Квантовая теория, сказал он, опровергла эти старые идеи; биологам нужно изучать физику твердого тела.
Порфирин. Химическая структура молекулы
Работая по специальности, он изучал структуру молекул, участвующих в сокращении мышц, но так и не смог понять, почему же их структура именно такая и как молекулы общаются друг с другом, координируя свою активность. Он видел подобные нерешенные проблемы в биологии практически везде. «Одно из моих главных затруднений с белковой химией, – не смущаясь, говорил он коллегам, – состояло в том, что я не мог себе представить, как такая молекула может „жить“. Даже самая сложная структурная формула белка выглядит „глупо“, если можно так выразиться».
Феномен, который заставил Сент-Дьёрдьи задуматься над этими вопросами, – порфириновые системы жизни. Он указал, что у растений 2500 молекул хлорофилла составляют одну функциональную единицу, а при тусклом свете не менее 1000 молекулам хлорофилла приходится работать одновременно, чтобы расщепить одну молекулу двуокиси углерода и создать одну молекулу кислорода.
Он говорил о «ферментах окисления» – цитохромах в наших клетках – и, опять-таки, задавался вопросом, как превалирующая модель вообще может быть верной. Как геометрически расставляется целая серия крупных белковых молекул, чтобы электроны переходили от одной молекулы к другой в точной последовательности? «Если бы мы даже смогли разработать такую структуру, – говорил он, – все равно остается совершенно непонятным, как энергия, высвобожденная передачей электрона от одного вещества к другому, то есть от одного атома к другому, может делать что-то полезное».
Сент-Дьёрдьи предположил, что организмы живы потому, что из тысяч молекул формируются целые системы с общим уровнем энергии – примерно такие же, как физики описывают в кристаллах. Электронам необязательно передаваться непосредственно от одной молекулы к другой, говорил он; вместо того чтобы быть привязанными только к одному или двум атомам, электроны мобильны, принадлежат всей системе целиком и передают энергию и информацию на большие расстояния. Иными словами, жизнь – это не бильярдные шарики, а жидкие кристаллы и полупроводники.
Главный грех Сент-Дьёрдьи – не в том, что он был неправ. Он не был неправ. Но он не осознавал всей застарелой враждебности вокруг. Электричество и жизнь уже довольно давно были оторваны друг от друга; промышленная революция вот уже полтораста лет неслась вперед на всех парах. Миллионы миль электрических проводов обвили Землю, выдыхая электрические поля, пронизывающие всех живых существ. Тысячи радиостанций пропитали сам воздух электромагнитными осцилляциями, от которых невозможно скрыться. Нельзя было позволить, чтобы они влияли на кожу и кости, нервы и мышцы. Называть белки полупроводниками было запрещено. Угроза промышленности, экономике и современной культуре будет слишком высока.
Так что биохимики продолжали думать о белках, липидах и ДНК как о маленьких шариках, плавающих в водном растворе и случайно сталкивающихся друг с другом. Они даже нервную систему представляли себе подобным образом. Им все же приходилось признавать квантовую теорию, когда их заставляли, но лишь в ограниченных рамках. Биологическим молекулам по-прежнему было позволено взаимодействовать только с непосредственными соседями, а не на расстоянии. Признавать современную физику разрешалось только по чуть-чуть, словно проделывая маленькую дырочку в плотине, через которую по капельке сочатся знания, и укрепляя тем временем основную структуру, чтобы ее не снесло наводнением.
Старым знаниям о химических связях и ферментах в водном растворе теперь приходится сосуществовать с новыми моделями дыхательной цепи переноса электронов. Их пришлось выдумать, чтобы объяснить явления, которые имеют важнейшее значение для жизни: фотосинтез и дыхание. Крупным порфиринсодержащим белковым молекулам больше не нужно было двигаться и физически взаимодействовать друг с другом, чтобы происходило что-то полезное. Теперь они могли оставаться на месте, а между ними передвигались туда-сюда только электроны. Биохимия становилась куда более живой. Но ее путь был еще далек. Ибо даже в новых моделях электроны, словно мальчики-посыльные, были ограничены передвижением лишь между одной белковой молекулой и ее соседкой. Они могли, так сказать, перейти через улицу, но не уйти по большаку в далекий город. Организмы по-прежнему изображали, по сути, как мешки с водой, содержащей очень сложные химические растворы.
Законы химии объяснили много в процессах обмена веществ, электрон-транспортные цепи объяснили еще больше, но организующего принципа найти так и не удалось. Слоны вырастают из крохотных зародышей, которые появляются из единственной безмозглой клетки. Саламандры идеально восстанавливают потерянные конечности. Когда мы получаем порез или перелом, клетки и органы нашего организма мобилизуются и координируют свои действия, чтобы восстановить поврежденные ткани. Как передается эта информация? Как, цитируя Сент-Дьёрдьи, белковые молекулы «живут»?
Несмотря на ужасный грех Сент-Дьёрдьи, его предсказания сбылись. Молекулы в клетках не дрейфуют случайным образом, чтобы столкнуться друг с дружкой. Большинство из них прикреплены к мембранам. Вода внутри клеток тщательно структурирована и не похожа на свободно текущую жидкость, которая плескается в стакане, прежде чем вы ее выпьете. Пьезоэлектричество, свойство кристаллов, которое делает их полезными для производства электронной техники, которое преобразует механический стресс в электрическое напряжение, и наоборот, обнаружили в целлюлозе, коллагене, кератине, костях, шерсти, дереве, сухожилиях, стенках кровеносных сосудов, мышцах, нервах, фибрине, ДНК и у всех типов белков, которые были проверены