Electromodel of the Auditory System («Электрическая модель слуховой системы»). Я взял у него интервью в начале 2013 г., незадолго до его смерти.
Как и Нафталин, Оффутт пришел к выводу, что текториальная мембрана – это пьезоэлектрический сенсор давления. А его подготовка как морского биолога позволила ему утверждать, что человеческие волосковые клетки, – и по своей эволюции, и по функционалу – являются электрорецепторами.
В конце концов, улитка млекопитающих произошла от рыбьего органа под названием лагена, у которого есть волосковые клетки, не слишком отличающиеся от наших, покрытые желеобразной мембраной, тоже похожей на нашу. Но у рыб поверх мембраны расположены структуры, называемые отолитами («ушными камнями») – кристаллы кальцита, пьезоэлектрические свойства которых в сто раз сильнее, чем у кварца. Оффутт утверждал, что это не случайность. Волосковые клетки в ушах рыб, сказал он, чувствительны к напряжению, вырабатываемому отолитами в ответ на звуковое давление[454]. Это, по его словам, объясняет, почему акулы слышат. Рыбы по большей части состоят из воды и должны быть прозрачны для звуков, распространяющихся в воде, если только у них нет плавательного пузыря с воздухом. Соответственно, если верить стандартной теории, акулы, у которых плавательного пузыря нет, должны быть глухи, но это не так. В 1974 г. Оффутт элегантно разрешил это противоречие, введя в свою модель рыбьего слуха электричество. И, соответственно, утверждал он, нет никакой причины считать, что человеческий слух тоже не работает этим же простейшим образом. Если улитка развилась из лагены, значит, текториальная мембрана развилась из отолитовой мембраны и должна быть пьезоэлектриком. А волосковые клетки, которые, по сути, не изменились, все равно должны работать как электрорецепторы.
На самом деле у рыб есть и другие, родственные волосковые клетки, о которых известно, что они являются электрорецепторами. Например, органы боковой линии у рыб отслеживают потоки воды, но на самом деле реагируют не только на воду, но и на низкочастотные звуки и электрический ток[455]. Волосковые клетки этих органов тоже покрыты желеобразным веществом – купулой, и к ним тоже тянется ответвление слухового нерва. Собственно говоря, боковая линия и внутреннее ухо настолько связаны между собой с функциональной, эволюционной и эмбриональной точек зрения, что все подобные органы у всех животных называют акустико-латеральной системой.
У некоторых рыб есть и другие органы, развившиеся из этой системы и обладающие тонкой чувствительностью именно к электрическому току. С помощью этих органов акулы могут обнаруживать электрические поля других рыб или животных и находить их в темноте, мутной воде или даже если они прячутся в песке или грязи на дне. Волосковые клетки этих электрических органов находятся под поверхностью тела в мешочках, называемых ампулами Лоренцини, и опять-таки покрыты желеобразной субстанцией.
Все подобные органы рыб, вне зависимости от специализации, чувствительны и к давлению, и к электричеству. Органы боковой линии, которые в основном чувствуют потоки воды, реагируют и на электрические стимулы, а ампулы Лоренцини, в основном засекающие электрические токи, реагируют и на механическое давление. Таким образом, морские биологи в свое время считали, что пьезоэлектричество играет важную роль в работе и боковой линии, и уха[456]. Ханс Лиссман, когда-то самый выдающийся в мире специалист по электрическим рыбам, считал, что это так. Позже анатом Мюриэл Росс, получившая грант от NASA для исследования воздействия невесомости на уши, подчеркивала, что отолиты рыб и родственные им отоконии («волосковый песок») в гравитационных сенсорах наших ушей являются пьезоэлектриками. Механическая и электрическая энергия, утверждала она, взаимозаменяемы, а обратная связь между волосковыми клетками и пьезоэлектрическими мембранами преобразует одну форму энергии в другую.
В другом связанном с этим исследовании 1970 г. Деннис О’Лири подверг желеобразные купулы полукруглых каналов лягушек – органов равновесия во внутреннем ухе – воздействию инфракрасного излучения. Реакция волосковых клеток в каналах соответствовала электрической, а не механической модели этих органов.
Недавно ученые доказали, что внешние волосковые клетки улитки сами по себе являются пьезоэлектриком. Они накапливают напряжение, реагируя на давление, а также удлиняются и укорачиваются при воздействии электрического тока. Их чувствительность невероятна: тока силой в один пикоампер (одну триллионную часть ампера) достаточно, чтобы длина волосковой клетки изменилась на измеримую величину[457]. Электрические токи, курсирующие сложными путями, обнаружили также в текториальной мембране и кортиевом органе[458]. А в маленьком пространстве между верхушками волосковых клеток и нижней частью текториальной мембраны были обнаружены пульсирующие волны, которые отражаются между внешними волосковыми клетками, текториальной мембраной и внутренними волосковыми клетками[459]. Австралийский биолог Эндрю Белл рассчитал, что в человеческой улитке эти волны жидкости должны иметь длину от 15 до 150 микрон (миллионных частей метра) – именно такой размер нужен, чтобы волосковые клетки длиной 20–80 микрон вошли в музыкальный резонанс. Белл сравнил эти волны с поверхностными звуковыми волнами, а кортиев орган – с резонатором на поверхностных акустических волнах, популярным электронным устройством, которое пришло на смену кристаллам кварца во многих отраслях промышленности.
В электрической модели слуха, созданной этими учеными, описано несколько мест, где электричество воздействует непосредственно на ухо. Внутренние волосковые клетки – электрорецепторы. Внешние волосковые клетки – пьезоэлектрики. Текторальная мембрана – пьезоэлектрик. И, поскольку на эти структуры может воздействовать как постоянный, так и переменный ток, многие ранние сообщения об услышанном электричестве – в том числе и те, которые списывали просто на «вибрации кожи», – нужно заново переоценить, утверждал Оффутт.
Именно тончайшей чувствительностью кортиева органа к электричеству объясняются как сообщения XIX в. о возможности слышать постоянный ток, так и сообщения XX в. о возможности слышать переменный ток. А еще мы теперь можем лучше понять, почему же полвека назад так страдала клиентка Кларенса Виске из Санта-Барбары и почему миллионы людей страдают сейчас. Тем не менее одного кусочка слуховой «мозаики» все еще не хватает.
Чтобы стимулировать слух, необходимо приложить к ушному каналу постоянный или переменный ток с силой примерно один миллиампер (одна тысячная ампера)[460]. Если же электрод поместить прямо в жидкость улитки, достаточно одного микроампера (миллионной части ампера)[461]. Если ток прикладывать непосредственно к волосковой клетке, то даже ток в один пикоампер (одну триллионную часть ампера) вызывает механическую реакцию[462]. Очевидно, совать электроды в наружное ухо – неэффективный способ стимуляции волосковых клеток. Их достигает лишь очень малая часть приложенного тока. Но в современном мире электроэнергия добирается до волосковых клеток напрямую, в виде радиоволн, для которых кости и мембраны прозрачны. Волосковые клетки еще и купаются в электрических и магнитных полях, излучаемых линиями электропередачи и электроприборами, которые подключены к ним. Все эти поля и радиоволны проникают во внутреннее ухо и индуцируют электрический ток внутри улитки. Возникает другой вопрос: почему же мы все тогда не слышим постоянной какофонии звуков, заглушающих любые разговоры и музыку? Почему бо́льшая часть электрического шума ограничена либо очень низкими, либо очень высокими частотами? Ответ, скорее всего, связан с той частью уха, которая обычно не ассоциируется со слухом.
Как услышать ультразвук
Человеческий ультразвуковой слух с 1940-х гг. переоткрывали больше десяти раз; последним стал профессор Мартин Ленхардт из Университета Содружества Виргинии. «Сама идея того, что у людей может быть такой же диапазон слуха, как у специализированных млекопитающих, например летучих мышей и зубатых китов, звучит настолько безумно, – писал он, – что ультразвуковой слух обычно относили к миру ярмарочных трюков и не считали серьезной темой для научных исследований»[463]. В настоящее время, похоже, ультразвуковой слух серьезно изучается только Ленхардтом, а также небольшой группой исследователей из Японии.
Тем не менее большинство людей – даже многие из тех, кто совершенно глухи, – могут слышать ультразвук с помощью кондуктивного слуха, и эта способность охватывает весь диапазон летучих мышей и китов, уходя далеко за пределы 100 кГц. Доктор Роджер Маасс в 1945 г. сообщил британской разведке, что молодые люди могут слышать звуки до 150 кГц[464], а одна группа советских ученых сообщила в 1976 г., что верхняя граница ультразвукового слуха – 225 кГц[465].
Брюс Дэтерейдж, занимавшийся исследованиями на кораблях для министерства обороны, случайно переоткрыл способность слышать ультразвук летом 1952 г., когда заплыл в луч сонара, вещавший с частотой 50 кГц. Повторив эксперимент с добровольцами, он сообщил, что все они услышали очень высокий звук – такой же, как самый высокий из тех, что они в принципе способны слышать. Ученые с базы подводных лодок ВМС США в Нью-Лондоне, штат Коннектикут, недавно подтвердили, что под водой можно слышать ультразвук с частотой до 200 кГц