Мир завтра. Как технологии изменят жизнь каждого из нас — страница 21 из 50

ами производства электроэнергии».

Чтобы эти споры утихомирились, нужно время, а поскольку время – и это единственное, в чем согласны обе стороны, – роскошь, которой у нас нет, возникают новые разногласия относительно того, какие первоочередные меры нужно принять ввиду надвигающегося энергетического кризиса. Зеленые считают каждый доллар, не направленный на развитие энергетики, основанной на возобновляемых источниках энергии, долларом, потраченным зря, тогда как в лагере сторонников атомной энергетики то же самое говорят о строительстве новых реакторов. Но даже если новые реакторы в ближайшем будущем начнут расти как грибы после дождя, есть целый перечень экономических вопросов, требующих безотлагательного решения.

«Убытки первых 75 реакторов, построенных в США, составили 100 миллиардов долларов, – говорит Джим Риччо, курирующий вопросы ядерной энергетики в Гринпис. – Атомная индустрия получила от государства более 100 миллиардов долларов субсидий [то есть около 13 миллиардов в расчете на одну станцию, что примерно равняется стоимости строительства новой станции], но так и не научилась зарабатывать деньги». На это отвечают, что любое новое предприятие претерпевает мучительный период роста и что 103 реактора, действующих в настоящее время в США, имеют очень высокий коэффициент эффективности, работая на уровне 90 процентов теоретически максимальной мощности, а данный показатель заметно выше 60 процентов, которых едва удавалось достичь в 1970-е годы. Но этот аргумент почему-то не производит ожидаемого впечатления на потенциальных инвесторов. В недавней статье на эту тему в журнале Time указывалось: «Модная ныне индустрия альтернативной энергетики, основанной на возобновляемых источниках энергии, привлекла в прошлом году 71 миллиард долларов частных инвестиций, тогда как в атомную энергетику деньги вкладывать не хочет никто». При этом цитируются слова известного эксперта в области энергетики Эмори Ловинса: «Уолл-стрит высказал свою позицию вполне определенно: атомная энергетика гроша ломаного не стоит».

Ясно, что введение налога на выбросы углерода или дополнительное государственное субсидирование атомной энергетики могли бы изменить картину, хотя, по расчетам Совета по защите природных ресурсов, чтобы обеспечить конкурентоспособность атомной энергии, углеродный налог должен составить от 40 до 60 долларов на тонну выбросов. Правда, эти цифры базируются на предположении, что атомная станция будет строиться 10 лет и расходы составят от 6 до 10 миллиардов долларов в расчете на один гигаватт мощности. Компания General Electric только что закончила строительство двух АЭС в Японии. Первая была построена за тридцать шесть месяцев, а вторая – за тридцать девять. Окончательные расходы на строительство составили 1,4 миллиарда долларов в расчете на 1 гигаватт.

Однако затраты – не единственный фактор, требующий внимания. Немало тревог доставляет непредсказуемость дальнейшего развития событий в энергетике в целом. Насколько еще хватит запасов нефти и газа? Сколько лет у нас в запасе для стабилизации климата – пять или пятьдесят? Если только пять, тогда можно забыть об экономических доводах, поскольку мы просто не успеем построить достаточное количество новых атомных станций в нужные сроки. Но если у нас в запасе еще лет пятьдесят, тогда оправдывается ли риск, связанный с ядерными реакторами, их потенциальными преимуществами?

Пытаясь найти ответ на этот вопрос, Роберт Соколов и Стивен Пакала из Принстонского университета рассчитали, что, если мы хотим избежать удвоения содержания углекислого газа в атмосфере по сравнению с временами, предшествовавшими промышленной революции, в ближайшие 50 лет необходимо уменьшить прогнозируемые выбросы углерода в общей сложности на 25 миллиардов тонн.

Они изучили 15 различных стратегий, способствующих решению этой задачи, – от использования энергии ветра до повышения эффективности транспортных средств и сокращения вырубки лесов. Ядерная энергетика также присутствует в этом списке. Соколов и Пакала указывают на то, что ядерные реакторы, оставляющие нулевой углеродный след, в настоящее время во всем мире вырабатывают 17 процентов электроэнергии и удвоение этой цифры за счет замены угольных станций атомными позволило бы решить седьмую часть задачи, но тут же замечают, что ввиду тревог, связанных с хранением ядерных отходов и опасностью распространения ядерного оружия, это единственный из пятнадцати перечисленных ими факторов, от которого можно было бы отказаться. Но остается вопрос: от каких именно ядерных технологий мы хотим отказаться?

4

Ученые классифицируют ядерные реакторы по поколениям. Первое поколение – это реакторы, построенные в 1950–60-е годы. Реакторы второго поколения появились в 70-е годы, и в настоящее время ими оснащены все американские АЭС; наибольшую долю среди них составляют легководные тепловые реакторы, работающие на топливе, состоящем на 3 процента из делящегося урана-235 и на 97 процентов из воспроизводящего урана-238.

Разница между этими двумя изотопами урана – в степени их стабильности. Принцип работы любого реактора заключается в бомбардировке тяжелых металлов нейтронами. Когда нейтрон попадает в ядро урана-235, оно расщепляется, выделяя энергию и высвобождая новые нейтроны. Уран-238 отличается тем, что в одних случаях ядро тоже расщепляется, а в других захватывает нейтрон и превращается в плутоний-239, ядро которого при дальнейшем расщеплении выделяет больше энергии.

В современных реакторах продолжительность ядерного топливного цикла составляет три года. К концу цикла в реакторе остается менее 1 процента урана-235 и больше половины энергии вырабатывается за счет расщепления ядер плутония. Отработавшее ядерное топливо, таким образом, состоит из трех компонентов. Около 5 процентов отходов составляют более легкие элементы, сохраняющие радиоактивные свойства около 300 лет. Львиная доля – 94 процента – приходится на уран, по своим свойствам мало чем отличающийся от того сырьевого урана, что добывают из земли. Но оставшийся 1 процент приходится на смесь изотопов плутония, приправленную америцием, которая остается «горячей» десятки тысяч лет и требует чрезвычайно надежных мест захоронения (типа строящегося хранилища «Юкка-Маунтин»).

По этой причине в 1976 году британская Королевская комиссия по вопросам загрязнения окружающей среды объявила «морально неприемлемым» поддерживать развитие атомной энергетики, не продемонстрировав одновременно возможности безопасного изолирования радиоактивных отходов. С тех пор в настроениях общественности мало что изменилось. Но на самом деле отходов этих совсем не так много, как нам пытаются внушить. «Все отработавшее топливо из энергетических реакторов и других источников, накопившееся в США за 50 лет существования ядерной энергетики, по своему объему так мало, что, если разложить его на торговой площади гипермаркета Walmart, толщина слоя составила бы девять футов, – говорит Кревенс. – Годовой объем отработавшего топлива из одного реактора легко уместится в кузов стандартного грузовика».

Куда же все-таки девать эти отходы? Многие предлагают последовать примеру Франции и отправлять отходы АЭС на переработку. Если в Америке (как и в Швеции, Финляндии, Испании и ЮАР) применяется открытый, или однократный, топливный цикл, то есть сырье используется только раз, то во Франции содержащийся в отработавшем топливе плутоний очищают, окисляют, затем смешивают со свежей порцией урана и полученное МОХ-топливо используют для нового цикла (эту технологию называют PUREX-процессом). Америка в свое время тоже собиралась пойти этим путем, но в 1976 году Индия, используя примерно такую же технологию переработки ядерных отходов, создала ядерное оружие, и многих такая перспектива напугала, в том числе тогдашнего президента США Джимми Картера.

В 1977 году Картер издал распоряжение, согласно которому всякие разработки методов переработки ядерных отходов на территории США должны быть прекращены. Цель его была благая – подать миру пример в борьбе с распространением ядерного оружия, однако мир этому примеру не последовал. Поэтому в 1981 году Рейган снял запрет, но денег на возобновление исследований не выдал. Реально исследования возобновились лишь в 1999 году, когда министерство энергетики, наконец, изменило свою политику и нашло подрядчиков на строительство перерабатывающего завода в Южной Каролине. Когда этот завод откроется, сказать не может никто. И пока это не произошло, 55 тысяч тонн радиоактивных отходов ждут своего часа в специальных хранилищах.

Поскольку PUREX-процесс вызывает беспокойство в связи с возможным распространением ядерного оружия, возможно, такая технология переработки является не самым лучшим решением проблемы отходов. Но дело не только в названной угрозе; дело еще и в низкой эффективности этой технологии. Однократный цикл использует потенциальную энергию уранового топлива лишь на 5 процентов. Последующая переработка плутония позволяет повысить эту цифру до 6 процентов, но все равно получается, что 94 процента потенциальной энергии ядерного топлива остаются невостребованными, а поскольку запасы урана отнюдь не безграничны и добыча урановой руды с экологической точки зрения отнюдь не безупречна, было бы очень неплохо научиться использовать этот потенциал.

И тут в игру вступают новейшие технологии.

5

Одним из примеров новейших технологий являются реакторы третьего поколения. Это усовершенствованные легководные реакторы со значительно более надежными системами безопасности. Они имеют модульную структуру, что позволяет изготавливать отдельные модули в заводских цехах, тем самым значительно снижая расходы. В настоящее время два реактора третьего поколения находятся в эксплуатации и еще два строятся. Но настоящий восторг вызывают реакторы следующего, четвертого, поколения.

Обычные ядерные реакторы называют тепловыми, или реакторами на медленных нейтронах, потому что используемые в них нейтроны замедляются для производства тепловой энергии. Это достигается за счет использования замедлителя, обычно воды, отчего эти реакторы называют легководными. Быстрые же реакторы (или реакторы на быстрых нейтронах), которые имеются в виду, когда говорят о реакторах четвертого поколения, замедлителя не имеют, в результате чего нейтроны сталкиваются с ядрами на гораздо большей скорости, что позволяет извлекать из топлива больше энергии.