Впервые эта кровеносная или вначале «водопроводная» система появилась у древних червей. У них не было еще настоящей крови: кровеносные сосуды этих животных наполняла обычная, лишь немного измененная морская вода. Постепенно, в процессе эволюционного развития сокращалось в ней количество ненужных организму морских солей, и появились новые вещества, до неузнаваемости изменился состав раствора и его химические свойства. Мало-помалу захваченная «в плен» морская вода превратилась внутри организма в чудесную жидкость, циркулирующую сейчас в наших венах и артериях. Образовалась кровь.
Можно сказать, что наши далекие предки — древние амфибии, выйдя триста миллионов лет назад на сушу, унесли в своих артериях частицу прежней родины — преобразованную в кровь морскую воду. До сих пор в крови животных сохранились морские соли. И чем ниже по своей организации животное, тем их больше.
В крови высших животных — птиц, скажем, или зверей — трудно обнаружить явные признаки морской воды. Оно и понятно. Ведь кровь, этот чудодейственный «сок» нашего организма, выполняет теперь очень многообразные функции. Тысячами протоков и микроскопических ручейков-капилляров растекается она по всему телу. Все клетки тела черпают из крови пищу, поступающую из кишечника, и отдают ненужные вещества и углекислый газ. Железы внутренней секреции выделяют в кровь гормоны, регулирующие работу разнообразных органов. Словом, кровь разносит по телу вместе с кислородом и множество всевозможных солей, кислот, питательных веществ и продуктов распада. Поэтому состав ее очень сложен.
Но у головоногих моллюсков он сложен не настолько, чтобы внимательный исследователь не мог обнаружить в их жилах следы морской стихии.
Если, пишет один ученый, попросить зоолога указать наиболее поразительную черту в развитии животного мира, он назвал бы не глаз человека (конечно, это удивительный орган) и не глаз осьминога, а обратил бы внимание на то, что оба эти глаза, глаз человека и глаз осьминога, очень похожи. Похожи они не только своим устройством, но часто даже и выражением — странный факт, который всегда поражал натуралистов.
Осьминожий глаз по сути дела ничем не отличается от человеческого. Во всяком случае разница между ними очень небольшая. Разве что роговица у осьминога не сплошная, а с широким отверстием в центре. Аккомодация (установка зрения на разные дистанции — фокусировка) у человека достигается изменением кривизны хрусталика, а у осьминога — удалением или приближением его к сетчатке, подобно тому как в фотоаппарате движется объектив. Веки осьминога смыкаются тоже иначе, не так, как у нас, они снабжены кольцевой мускулатурой и, закрывая глаз, затягивают его словно занавеской на кольцевой вздёржке.
Ни у кого из обитателей моря нет таких зорких глаз, как у осьминога и его родичей. Только глаза совы, кошки да человека могут составить им конкуренцию.
На одном квадратном миллиметре сетчатки осьминожьего глаза насчитывается около 64 тысяч воспринимающих свет зрительных элементов, у каракатицы еще больше — 105, у кальмара — 162, у паука же их только 16, у карпа — 50, у кошки — 397, у человека — 400, а у совы даже 680 тысяч.
И размер глаз у головоногих моллюсков рекордный. Глаз каракатицы лишь в десять раз меньше ее самой, а у гигантского спрута глаза величиной с небольшое колесо. Сорок сантиметров в диаметре!
Даже у тридцатиметрового голубого кита глаз не превышает в длину 10–12 сантиметров (в 200–300 раз меньше самого кита).
Но самые необыкновенные глаза — у глубоководных кальмаров: у одних они торчат вверх телескопами, у других на тонких стебельках вынесены далеко в стороны, а есть и такие кальмары, у которых (небывалое дело!) глаза асимметричные: левый в 4 раза больше правого. Как плавают эти животные: ведь голова у них неуравновешенная… Немалые, наверное, приходится им прилагать усилия, чтобы плыть вперед и не переворачиваться.
Облик глубоководных кальмаров необыкновенно причудлив
Профессор Джильберт Восс из Океанографического института в Майами (США) думает, что большой глаз приспособлен к глубинам, он собирает своей мощной оптической системой рассеянные там крохи света. Маленьким же глазом кальмар обозревает окрестности, всплывая на поверхность. Это вполне возможно.
У кальмаров есть и совсем особенные глаза, ни у кого в природе не встреченные, — термоскопические. Они «видят»… тепло.
На плавниках кальмара мастиготевтиса около 30 миниатюрных «термолокаторов», способных, очевидно, воспринимать тепловые лучи. Темными точками они рассеяны в коже. Под микроскопом видно, что орган состоит из шаровидной капсулы, наполненной прозрачным веществом. Сверху капсула прикрыта толстым слоем красных клеток — это светофильтр, он задерживает все лучи, кроме инфракрасных.
Глубоководный кальмар амфитретус с телескопическими, направленными вверх глазами. Тело его покрыто полупрозрачной студневидной оболочкой
По-видимому, в термоскопических глазах кальмаров происходят фотохимические процессы такого же типа, как и на сетчатке обычного глаза или на фотопластинке. Поглощенная органом энергия приводит к перекомбинации светочувствительных (у кальмаров — теплочувствительных) молекул, которые воздействуют на нерв, вызывая в мозге представление о наблюдаемом объекте.
У гремучих змей Америки и щитомордников, которые водятся и у нас в Сибири, тоже есть на голове своеобразные термолокаторы, но устроены они иначе: по принципу термоэлемента.
Змеи при помощи термолокаторов разыскивают в темноте теплокровных грызунов и птиц, которые, как и всякое нагретое тело, испускают инфракрасные лучи.
А зачем термоскопические глаза кальмарам? Ведь на глубинах, где они обитают, нет теплокровных животных…
Нет ли? А кашалот? Этот прожорливый кит ныряет очень глубоко и охотится в морской бездне на кальмаров. Съедает их в день несколько тонн. Я просмотрел содержимое желудка нескольких сот кашалотов, добытых нашими китобойными флотилиями, и убедился, что бóльшую часть меню старины Моби Дика составляют глубоководные кальмары. Сотни тысяч кашалотов пожирают ежедневно сотни миллионов кальмаров, преимущественно глубоководных.
Вот почему, я думаю, развились у жителей холодной пучины глаза, которые «видят» тепло. Местных теплокровных животных там нет, это правда, зато сверху, с сияющей лазури моря, вторгаются в царство вечного мрака огромные прожорливые звери. Сигналы об их приближении подают кальмарам термолокаторы.
Мы переходим к описанию самого интересного органа головоногих моллюсков — реактивного двигателя. Обратите внимание, как просто, с какой минимальной затратой материала решила природа сложную задачу.
Снизу, у «шеи» кальмара (рассмотрим в качестве примера этого моллюска), заметна узкая щель — мантийное отверстие. Из нее, словно пушка из амбразуры, торчит наружу какая-то трубка. Это воронка, или сифон, — «сопло» реактивного двигателя.
И щель, и воронка ведут в обширную полость в «животе» у кальмара: то мантийная полость — «камера сгорания» живой ракеты. Всасывая в нее воду через широкую мантийную щель, моллюск с силой выталкивает ее затем через воронку. Чтобы вода не вытекала обратно через щель, кальмар ее плотно замыкает при помощи особых «застежек-кнопок», когда «камера сгорания» наполнится забортной водой. По краю мантийного отверстия расположены хрящевые грибовидные бугорки. На противоположной стороне щели им соответствуют углубления. Бугорки входят в углубления и прочно запирают все выходы из камеры, кроме одного — через воронку.
Когда моллюск сокращает брюшную мускулатуру, сильная струя воды бьет из сифона. Отдача толкает кальмара в противоположную сторону.
Воронка направлена к концам щупалец, поэтому головоногий моллюск плывет хвостом вперед. Вот почему каракатица в «Тараканище» Корнея Чуковского «так и катится, так и пятится» — обстоятельство, которое, помню, очень смущало меня в детстве.
Реактивные толчки и всасывание воды в мантийную полость с неуловимой быстротой следуют одно за другим, и кальмар ракетой проносится в синеве океана. Если бы толчки были отделены друг от друга значительными промежутками времени, как у гребешка или эшны, то животное не получило бы особых преимуществ от такого передвижения. Чтобы ускорить темп реактивных «взрывов» и довести его до бешеной скорости, необходима, очевидно, повышенная проводимость нервов, которые возбуждают сокращение мышц, обслуживающих реактивный двигатель.
Осьминог в раковине морской улитки. Направленная в нашу сторону трубка — это и есть воронка, реактивный двигатель спрута
Кальмары, как ракеты, стремительно проносятся в толще океанских вод
Испуганный кальмар с помощью «реактивного двигателя» рывком уходит назад
Проводимость же нерва при прочих равных условиях тем выше, чем больше его диаметр. И действительно, у кальмаров мы находим самые крупные в животном царстве нервные волокна. Диаметр их достигает целого миллиметра — в 50 раз больше, чем у большинства млекопитающих, — и проводят возбуждение они со скоростью 120 метров в секунду.
У трехметрового кальмара дозидикуса (он обитает у берегов Чили) толщина нервов фантастически велика — 18 миллиметров. Нервы толстые, как веревки. Сигналы мозга — возбудители сокращений — мчатся по нервной «автостраде» кальмара со скоростью гоночного автомобиля — 90 километров в час!
Когда в начале нашего века были открыты эти сверхгигантские нервы, ими тотчас заинтересовались физиологи. Наконец-то нашли они подопытное животное, у которого в живые нервы можно было вставлять игольчатые электроды. Исследование жизнедеятельности нервов сразу продвинулось вперед. «И кто знает, — пишет британский натуралист Фрэнк Лейн, — может быть, есть сейчас люди, обязанные кальмару тем, что их нервная система находится в нормальном состоянии».