Млечный Путь №1, 2013 (4) — страница 50 из 53

ит из-за того, что в момент его выделения начинают активироваться все системы, предусмотренные для его «погашения». (http://www.tiensmed.ru/news/adrenalin2.html).

Физиологи называют реакцию организма на адреналин реакцией типа «бей или беги» . Для этого нужно много энергии и она высвобождается из «энергетических запасов» клеток. Под влиянием адреналина происходит повышение содержания глюкозы в крови и усиление тканевого обмена.

Достаточно давно было установлено, что адренорецепторы («адреналиновые рецепторы») имеются чуть ли не во всех тканях нашего организма. Но как они работают, т. е. как клетки узнают о том, что нужно запускать процессы «погашения» адреналина?

Адреналин захватывается адренорецептором, который «встроен» сквозным элементом в клеточную мембрану. Рецептор, начав взаимодействие с молекулой адреналина на внешней поверхности клеток, затем втягивает ее внутрь клеточной мембраны. При этом изменяется пространственное расположение (конформация) семи связанных друг с другом сегментов (доменных элементов) адренорецептора, которые с внутренней стороны мембраны связаны с особым белком (G-белок). Понятно, что внедрение молекулы адреналина внутрь рецептора, изменяющее его структуру, изменяет и характер связи элементов рецептора с G-белком. Это воздействие активирует его.

Внутриклеточные G-белки и являются универсальными посредниками при передаче гормональных сигналов от рецепторов клеточной мембраны к другим, находящимся внутри клетки белкам («эффекторным белкам»), которые и вызывают конечный клеточный ответ.

Не рассматривая подробно механизм действия активированного G-белка, скажем только, что он является катализатором процесса энерговыделения в клетке и, как всякий катализатор, запустив процессы работы эффекторных белков, возвращается в состав рецептора в исходном неактивном состоянии.

Рецепторы, за исследование которых была получена премия, называются GPCR – G-protein-coupled receptors. (Они известны и под названиями семиспиральные рецепторы или серпентины).

Серпентины являются передатчиками сигналов внутрь клеток, позволяя им, различным органам и системам организма общаться друг с другом, а также получать информацию об окружающей среде. Существует более 800 различных GPCR, которые находятся в мембранах клеток человека и распознают широкий диапазон внеклеточных агентов, включающих ионы, гормоны, пептиды и т. д. Примерами хорошо известных молекул, на которые реагируют рецепторы, кроме адреналина, являются серотонин, дофамин, гистамин, кофеин, опиоиды и многие другие. Функции около 150 рецепторов, обнаруженных в геноме человека, остается невыясненной.

Процессы, контролируемые GPCR, дают нам возможность видеть, ощущать запахи, реагировать на опасность, испытывать боль или чувствовать эйфорию, поддерживать кровяное давление и регулировать сердцебиение, т. е. все, что необходимо для регулирования жизнедеятельности организма. Иногда сигнальные процессы нарушаются, приводя к многочисленным и зачастую тяжелым заболеваниям. Многие заболевания, однако, возможно излечить, воздействуя на рецепторы лекарственными препаратами. На самом деле около половины всех современных лекарств нацелены на рецепторы, сопряженные с G-белками. Таким образом, исследования, направленные на определения структуры GPCR рецепторов и механизмов передачи сигналов, должны позволить глубже понять причины многих заболеваний, а также дать толчок к разработке более эффективных лекарств с минимальными побочными эффектами.

История исследований GPCR насчитывает более 100 лет. Рецептор, реагирующий на свет – родопсин – был обнаружен и выделен в 1870 году немецким ученым Вильгельмом Кюне. К началу 70-х годов ХХ века было известно, что мышечные клетки можно активировать или тормозить путем воздействия определенными молекулами. Часть механизма внутриклеточных реакций тоже была известна, а также было ясно, что молекулы, возбуждающие клетки, не проникают внутрь клеток. Таким образом, было постулировано существование некоторой рецепторной субстанции, которая реагирует на внеклеточные молекулы и передает сигнал внутрь клеток.

Вот здесь и начинается химия. Поиском этой неуловимой рецепторной субстанции и занялся Роберт Лефковиц, используя адреналин со встроенным радиоактивным изотопом йода. Эти исследования позволили определить, что адреналин связывается с некоторым белком на поверхности клетки, который и является рецептором. То, что сигнал внутри клетки передается путем активирования G-белков внутри клетки, было к этому времени уже обнаружено Родбеллом и Гиллманом (за что оба ученых получили Нобелевскую премию по медицине в 1994 году).

Однако химическая идентификация рецепторного белка, требующая определения аминокислотной последовательности GPCR, оставалась большой проблемой, поскольку все рецепторы – за исключением родопсина – производятся клетками в исключительно малом количестве. Впервые выделить и определить последовательность бета-адренорецептора (рецептора, реагирующего на адреналин) удалось в 1986 году опять же в лаборатории Лефковица с участием Брайана Кобилки, проводившего постдокторальные исследования.

Исследование принесло большой сюрприз: анализ аминокислотной последовательности показал, что адренорецептор состоит из семи трансмембранных альфа-спиралей и очень похож на зрительный рецептор родопсин. К тому времени изучение структуры родопсина было более продвинутым благодаря работам нескольких лабораторий, включая советских ученых под руководством Юрия Овчинникова.

Эти работы Лефковица и Кобилки показали, что рецепторы с совершенно различными функциями химически могут быть близкими родственниками и что, возможно, существуют и другие рецепторы с похожей структурой. Действительно, секвенирование генома человека позволило обнаружить более 800 генов, кодирующих серпентины. (Секвенирование – определение аминокислотной последовательности, от лат. sequentum – последовательность). Стало ясно, что передача сигналов с помощью GPCR является универсальным механизмом общения между клетками, а также клеток с окружающей средой.

Для того чтобы полностью понять механизм работы GPCR, необходимо было знание их пространственной структуры с атомным разрешением. А это – чисто химическая задача! Такие структуры можно описать только с помощью рентгеноструктурного анализа, требующего выращивания высокоупорядочных кристаллов. Серпентины, однако, были знамениты трудностью их кристаллизации, которой занимались многие во всем мире.

Первую структуру GPCR получил Пальчевский в 2000 году, закристаллизовав тот же родопсин, который является наиболее стабильным и наименее подвижным из всех серпентинов. Понадобилось еще 7 лет, прежде чем была определена первая структура человеческого рецептора, реагирующего на адреналин.

Структура бета-адренорецептора была опубликована в журнале Science в 2007 г. и названа одним из 10 научных достижений года. В этой работе есть вклад и Вадима Черезова, который смог закристаллизовать модифицированный адренорецептор. За последние 5 лет были определены структуры 15 различных GPCR – в основном лабораториями Кобилки и Стивенса.

Таким образом, благодаря героическим усилиям Лефковица, Кобилки и других ученых в течение последних 40 лет мы узнали о существовании уникального и разнообразного семейства рецепторов, сопряженных с G-белками, которые контролируют все жизненно важные процессы в организме человека. Структурные исследования последних пяти лет принесли знания трехмерных структур этих рецепторов, позволили понять, как внеклеточные агенты распознаются рецепторами, а также каким образом происходит передача сигналов к G-белкам.

Эти пионерские работы положили начало более детальным исследованиям, которые в будущем позволят узнать необходимые нюансы, отличающие эти рецепторы друг от друга и позволяющие им селективно реагировать только на определенные агенты, лучше понять фармацевтические детали передачи сигнала.

Все это, возможно, приведет к появлению медицины нового уровня, когда лекарства будут более эффективными, перестанут вызывать побочные явления и будут подбираться согласно генетической информации о GPCR конкретного пациента.

Нобелевскую премию по физике 2012 года получили американец Дэвид Уайнленд из Национального института стандартов и француз Серж Арош из Эколь Нормаль за «развитие основополагающих экспериментальных методов измерения и манипуляций над одиночными квантовыми системами».

Дэвид Джеффри Уайнленд родился в Милуоки, штат Висконсин, США. В 1961 году закончил школу Энсина в Сакраменто, Калифорния. Физику изучал сначала в Калифорнийском университете в Беркли, потом в Гарвардском университете, где и защитил диссертацию в 1970 году. Она была посвящена мазерам на атомарном дейтерии. Некоторое время Уайнленд вел научные исследования в Вашингтонском университете в группе Ханса Георга Демельта , а в 1975 году перешел на работу в Национальное бюро стандартов в Боулдере, штат Колорадо (в 1988 году было переименовано в Национальный институт стандартов и технологий), где и работает в настоящее время. Именно там он выполнил свои основные эксперименты. Сферой его исследований являлась оптика и, в частности, лазерное охлаждение ионов в квадрупольных ионных ловушках с последующим использованием захваченных ионов для выполнения квантовых вычислений. Параллельно 68-летний профессор Уайнленд преподает в Колорадском университете.

Уайнленд является членом Американского физического общества и Американского оптического общества. В 1992 году он был избран членом Национальной академии наук США. (http://www.nobeliat.ru/laureat.php?id=859 )

Серж Арош родился 11 сентября 1944 года в Касабланке , в еврейской семье марокканского (по отцу) и российского (по матери) происхождения. Его мать – уроженка Одессы Валентина Арош (урожденная Рублева, 1921 – 1998) – работала учительницей, отец – Альбер Арош (1920 – 1998, родом из Марракеша) – был адвокатом. Его бабушка и дедушка (Исаак и Эстер Арош) возглавляли школу