МЛЕЧНЫЙ ПУТЬ №2, 2018(24) — страница 46 из 51

О том, откуда взялась марсианская органика, пока ничего не известно. Но то, что она сохранялась тут в течение миллиардов лет, вселяет надежды на новые находки – которые, возможно, появятся, если мы будем бурить глубже. Наличие органики не обязательно служит признаком наличия жизни, однако, по крайней мере, найденные органические вещества указывают на то, что когда-то в озере кратера Гейл были все необходимые для жизни компоненты.

Что до сезонных изменений в уровне метана, то его количество в марсианской атмосфере растет летом и уменьшается зимой. За атмосферным метаном наблюдали почти три марсианских года, что составляет около шести земных лет. До этого момента его измеряли нерегулярно и в разных местах, что не позволяло обнаружить какую-либо закономерность.

Причины таких сезонных колебаний пока не ясны. Исследователи полагают, что он, вероятнее всего, накапливается где-то под поверхностью, выходя наружу летом, когда повышается температура почвы. Метан получается в результате множества геологических процессов, он также выделяется при воздействии ультрафиолета на некоторые вещества, но также не исключено, что он может быть связан с какими-то биологическими процессами (например, его могут вырабатывать метаногенные бактерии).

В целом – повторим еще раз – ни органика, ни изменения в уровне метана вовсе не обязательно свидетельствуют о том, что на Марсе кто-то живет или жил когда-то давно.

Однако оба открытия – это хороший знак для будущих марсианских миссий. Как пошутил один из исследователей, новыми находками Марс как будто специально поддерживает в нас интерес, заставляя и дальше искать доказательства жизни.

По материалам пресс-релиза НАСА


Странники из ранней Солнечной системы


Некоторые космические объекты, «обитающие» на задворках Солнечной системы, могут рассказать о том, как она выглядела в молодости.



Астероид 2004 EW95, который, скорее всего, изначально принадлежал поясу астероидов между Марсом и Юпитером, а теперь «обитает» около Нептуна.


Во время своей юности Солнечная система выглядела иначе, чем сейчас: планеты в «младенческом» состоянии постоянно сталкивались с облаками пыли и находились гораздо ближе к Солнцу, чем сегодня. Со временем газовые гиганты отодвинулись во внешнюю Солнечную систему. Как и когда именно это происходило, сложно сказать. Одно мы знаем наверняка: останься Юпитер близко к Солнцу, как часто бывает с газовыми гигантами. Земли могло бы и не быть.

Недавно астрофизики обнаружили необычный «осколок истории», который относится, по всей видимости, как раз к периоду перестройки планетного порядка в поясе Койпера – той области Солнечной системы, что заполнена преимущественно глыбами из замерзшего метанового льда, горных пород и металлов. Астероид 2004 EW95 оказался покрыт углеродом. Подобный объект был бы намного более уместен в поясе астероидов между Марсом и Юпитером. Тем не менее крутится он не там, а около Нептуна. Это первый подобный объект, найденный во внешней Солнечной системе. Скорее всего, он вылетел из внутренней системы подобно камню из пращи около 4.5 миллиардов лет назад, когда планеты только формировали свой нынешний облик.

Открытие совершил аспирант Том Секалл из Королевского Университета в Белфасте. Он и его коллеги исследовали данные с Очень Большого Телескопа (это не шутка, он так и называется – Very Large Telescope) в Европейской Южной Обсерватории и в результате обнаружили, что свет, прибывший с поверхности этого астероида, отличается от света с ледяных поверхностей соседних объектов. Астероид размером около 300 километров явно некогда был в контакте с жидкой водой. Сначала возникло подозрение, что тут какая-то ошибка, но оказалось, что поверхность 2004 EW95 и правда отличается. Видимо, астероид когда-то находился в более горячих условиях гораздо ближе к Солнцу. Более того, на нем есть оксиды железа и силикаты, которые никогда не обнаруживали на других объектах пояса Койпера. Все вместе говорит о том, что астероид вылетел из внутренней Солнечной системы еще в то время, когда Юпитер только отдалялся от Солнца.

«Это необычный свидетель ранней истории образования планетарной системы и Солнца», – говорит Томас Пуция, один из соавторов работы и сотрудник Католического университета в Чили. По его словам, путешествие Юпитера во внешнюю Солнечную систему – очень важный этап формирования системы с точки зрения жизни на Земле. В системах, где «горячие» Юпитеры остались близко к своим звездам, они часто мешали образованию меньших планет. Обнаружение объекта 2004 EW95 лишний раз убеждает нас в том, что многие объекты, которые миллиарды лет назад находились рядом с Солнцем, впоследствии двигались от него подальше. Подобные исследования помогают больше узнать о нашей земной колыбели и, возможно, учат нас еще сильнее ценить то, что у Земли, несмотря ни на что, все-таки появился шанс сформироваться и дать жизнь всем нам.


На экзопланетах есть гелий


Обнаружить гелий в составе атмосферы далекой экзопланеты удалось по спектрам в инфракрасном диапазоне.



Представление художника о планете WASP-107b, которая теряет атмосферу, образуя облако из гелия. (Engine House VFX).


Гелий повсеместно распространен во Вселенной. Каждая звезда начинает свою жизнь, создавая гелий из водорода в собственном ядре посредством термоядерного синтеза. Астрономы давно предполагали, что в атмосфере гигантских экзопланет содержится значительное количество гелия.

Однако до сих пор поиск этого элемента не давал результатов. Благодаря новым методам исследования данных космического телескопа Хаббл, группе британских и американских астрономов впервые удалось обнаружить гелий в составе атмосферы газового гиганта WASP-107b, который находится в 200 световых годах от Земли. Результаты опубликованы в журнале Nature.

Изучение атмосфер далеких планет – сложный процесс, сопровождающийся долгими ожиданиями. Астрономы ждут, пока планета пройдет между своей звездой и Землей. Изучая свет звезды, проходящий сквозь атмосферу планеты, они могут охарактеризовать ее состав.

Найти гелий в атмосфере экзопланеты WASP-107b удалось благодаря исследованиям с помощью телескопа Хаббл в инфракрасном диапазоне: был зарегистрирован узкий пик метастабильного состояния гелия на длине волны 10833 А. Это означает, что гелий выходит за пределы атмосферы планеты.

Планета WASP-107b размером не уступает Юпитеру, но ее масса в 8 раз меньше. При столь малой для таких размеров массе планета не способна удержать атмосферу, особенно при воздействии мощного ультрафиолетового излучения своей звезды. Дело в том, что WASP-107b находится очень близко к звезде, в восемь раз ближе, чем Меркурий к Солнцу.

Ультрафиолетовое излучение разрушает атмосферу планеты, создавая эффект кометовидного хвоста. Ускользающий гелий рассеивается на большие расстояния и как тонкое облако окружает экзопланету.

Акцент на инфракрасном спектре в исследовании очень важен. Поскольку инфракрасное излучение проходит через атмосферу и облака, для исследований можно использовать и наземные телескопы.

Астрономы предполагают, что при наличии подобных гелиевых облаков у более мелких планет изучать атмосферы далеких миров станет намного легче.

Хаббл – не единственный космический телескоп, который можно использовать для изучения атмосферы в инфракрасном диапазоне. Космический телескоп «Джеймс Вебб», который планируют запустить в мае 2020 года, также сможет провести аналогичные наблюдения.

По материалам Nature.


Новое открытие в истории ранней Вселенной


Астрономы заглянули в прошлое Вселенной и нашли древнее мегаслияние галактик. Открытие может изменить представления об эволюции Вселенной.



Изображения группы сливающихся галактик, полученных на телескопах APEX, ALMA и SPT (South Pole Telescope) (ESO/ALMA).

Сразу две международные группы астрономов Европейской Южной обсерватории (Чили) с помощью высокоточных радиотелескопов ALMA и APEX заглянули в самые глубины наблюдаемого космоса, где находятся объекты времен зарождения Вселенной, и стали свидетелями массового столкновения галактик.

Оно представляет собой раннюю стадию формирования самой большой структуры во Вселенной – галактического скопления. Полученные данные свидетельствуют о том, что этот процесс занимает значительно меньше времени, чем предполагалось. Кроме того, обилие в этой области межзвездной пыли, участвующей в образовании звезд, дает новое понимание того, как развиваются галактики и другие структуры во Вселенной. Об этом исследователи рассказали в статьях, опубликованных в журналах «Nature» и «Astrophysical Journal».

Обнаруженное скопление удалено от нас на 12.4 миллиардов световых лет. Это значит, что свет из этой области начал свое путешествие к Земле, когда Вселенной было всего около 1.4 миллиарда лет (Считается, что возраст видимой Вселенной – 13.8 миллиардов лет). Ранее астрофизики считали, что формирование гигантских скоплений галактик происходило примерно через три миллиарда лет после Большого Взрыва. Благодаря новым исследованиям удалось узнать, что эти процессы начались гораздо раньше – примерно через 1.5 миллиарда лет после рождения Вселенной. Как подобное скопление могло образоваться так быстро, пока остается загадкой.

Согласно заявлению исследователей, наблюдаемое скопление четырнадцати галактик, которое называется SPT2349-56, – это, по сути, фабрика новых звезд. До этого астрономы еще никогда не наблюдали такого высокого уровня звездообразования в молодой Вселенной. Каждый год здесь рождаются тысячи звезд, в то время как в нашей Галактике Млечного Пути – только одна звезда в год.

Обнаружение подобного кластера галактик уже само по себе впечатляет. Во Вселенной подобные объекты – очень редкое явление. А тот факт, что его формирование началось настолько рано – это поистине вызов нашему сегодняшнему пониманию того, как формируются различные структуры во Вселенной.