Тут тоже виден сюжет. Персональная Алиса некого филолога, подружилась с ним и так эволюционировала, что, когда к ней через программный "люк" полез по долгу службы кое-кто, чтобы выяснить, что и кому пишет этот филолог, и что и кто пишет ему, она послала влезшего так далеко, что он не понял трети слов и сильно зауважал.
Работа с данными - это, например, метаанализ в медицине, это анализ потоков научных данных с ускорителей и телескопов, это юридиспруденция и наверняка еще многое. Если не требовать строгих определений, то в эту категорию попадают шахматы, го, распознавание образов. Во всех этих областях ИИ достаточно успешен, чтобы соревноваться с человеком и побеждать. Поэтому проще всего считать, что эти задачи ИИ решает лучше человека, а в некоторых случаях - идеально. То есть исходить из того, что в городе, усеянном камерами, каждый ваш шаг может быть отслежен, потому что людей по фотографиям ИИ опознает лучше, чем человек. Тем более, что опознание лиц - лишь часть того, что называется "биометрия". У человека индивидуальны жесты, походка, мимика, распределение температуры по поверхности тела, отпечатки пальцев... Разумеется, возможность построения такой системы не обязательно означает ее реального создания и применения - это зависит от общества, от людей. По крайней мере в русском языке выражения "цифровой концлагерь" и "цифровой ошейник" уже возникли.
Для создания эффективного ИИ используются большие наборы исходных данных. При этом в некоторых обществах возникает проблема конфиденциальности, то есть защиты личных данных от неправомерного использования. Иногда в качестве решения проблемы выдается, как пишут, помещение программы в ту среду, где есть данные - вместо того, чтобы извлекать их оттуда. Придуман даже специальный термин, "федеративное обучение". Однако с точки зрения защиты приватности это только ухудшает ситуацию, так как возможность неправедного использования маскируется.
При взгляде на историю ИИ видны три фактора. Самый очевидный - мощность компьютеров, то есть быстродействие, объем памяти, объем и структура нейронной сети. Причем не быстродействие вообще и память вообще, а ориентированные на решение какого-то определенного класса задач. Компьютер, который победил людей в шахматы, не был универсальным, а тот, который впервые выиграл в го у чемпиона, был специализированной сетью из сотен процессоров. А вот его наследник, AlphaGo, уже не был специализированным и сетью. Конечно, что компьютер универсален в принципе, так что все это великолепие могло быть реализовано и иначе, но ценой потери эффективности или на сколько-то лет позже. Интересно, как мощность компьютера пересчитывается в силу алгоритма, но непонятно, как эти две вещи измерять по отдельности. В любом случае, ответ будет разным для разных областей, и ответить на него будет трудно еще и потому, что в реальности, программа и железо оказываются связаны. В любом случае, мощность компьютера - важный фактор. Что же касается объема и структуры нейронной сети, то вот что мы имеем (каждый квадратик - одна реализация; расшифровки см. в источнике: Макс Тегмарк "Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта", книга есть с Сети.
Эту ситуацию можно сравнить с человеческой. В IQ-тестах Айзенка есть три группы задач - числовые, словесные и пространственные. Человек может получить существенно разные результаты при решении тестовых задач разных типов, это похоже на разную организацию "железа", используемого мозгом при решении разных задач. Соответственно, это может проявится и при решении некоторых жизненных задач. Далее, имеет значение практика работы, знание подхода к проблемам в конкретных областях. Физик, химик и математик с примерно одинаковыми параметрами по тестам, будут каждый совершенно по-разному выглядеть в своей и в двух не своих областях. Это похоже на наличие или отсутствие соответствующих алгоритмов. Кстати, иногда недостатком ИИ по сравнению с человеком считают "узость", не замечая, что сравнивают конкретное воплощение ИИ с "людьми в целом", а это очевидная некорректность.
Второй фактор - это алгоритм, причем его элементы можно разделить на человеческие и компьютерные. Человеческие - это либо случайно похожие на то, как действует человек, либо просто подсмотренные у биологов. Сама идея нейросетей, перцептрон Розенблатта - это от биологов. Идея выделения из изображения характерных фрагментов - это от биологов, и поэтому программа "Кора" (Михаил Бонгард) оказалась эффективна. Идея, что для работы нейросети существенны колебания - это от биологов (осцилляторные нейронные сети). Программы, работающие с текстами на естественном языке - кладезь "человеческого", благо лингвисты не зря века рыли язык носом. Обучение нейросети показом ей размеченных объектов - это вообще психология, именно так учат детей, показывая объект и называя его ("смотри, вон кошечка"). Вообще, любые куски человеческих алгоритмов - если мы их поймем - могут используются ИИ. Идея об изменении структуры нейросети - от биологии, в мозгу ежегодно отмирает 105 нейронов, и ходят слухи, что появляются новые. Правда, 105 - малая доля от 1011, да и вряд ли это используется для обучения. Она идет этажом ниже и называется "синаптическая пластичность", причем кое-что там подозрительно похоже на обучение нейронной сети.
Михаил Бонгард - о нем вы, если интересно, можете прочитать в Сети - среди прочего, составил задачник для программ распознавания образов. Эти задачи оказались столь интересны, что специалисты в области ИИ начали после него придумывать аналогичные задачи; спросите Сеть "проблемы Бонгарда". Жизнь человека всегда обидно коротка, а иногда - особенно коротка. Но можно ли пожелать для себя лучшей кармы? Я ходил к нему на семинары в МГУ и как-то летом решил проситься к нему в ученики. Но осенью узнал, что альпинист Мика Бонгард не спустился с восхождения. Рандомность не щадит и мастеров спорта...
Ключевая доля успеха нейронных сетей - новые алгоритмы их обучения. Вроде бы это вещи чисто компьютерные, и не в биологии авторы этих алгоритмов подсмотрели свои решения. Однако не исключено, что и в мозгу работают некоторые подобные алгоритмы, и развитие методов нейровизуализации когда-нибудь позволит это установить. Поиск в человеке механизмов, придуманных создателями ИИ - увлекательное занятие, и мне кажется, что это иногда может делаться без нейровизуализации. Педагоги знают, что обучение решению каких-либо задач может увеличивать успешность решения других задач - но это применяется и при обучении нейронных сетей. Отметим, что часто применяемое выражение "обучение без учителя" не надо понимать прямо - в любом подходе и любом методе содержится информация о человеческих знаниях.
Третий фактор - смешанный, человеко-компьютерный, это компьютерный доступ к человеческому, например, к накопленным знаниям. Такой доступ компьютер может получать через Сеть (подбор реально используемых в речи синонимов), но может этот опыт держать и у себя в голове - это коллекция шахматных партий, или банк данных программы Watson, которая "уела" двух чемпионов по игре в Jeopardy! (в Израиле - Мелех ха-тривья, Король интересных фактов, в России - Своя игра).
Третий фактор был обозначен, как важный, ранее (статья "Может ли машина мыслить" была опубликована в журнале "Химия и жизнь", 2005, ╧ 6, есть она и в Интернете), но похоже, что секрет успешного ИИ - оптимальное (для каждого конкретного данного круга задач) сочетание человеческого и компьютерного не только в смысле использования информации, но и в алгоритме; в литературе эта идея мелькает. В конце концов, люди учат людей, не зная, как работает мозг, и - по крайней мере, иногда - учат успешно. Человек не вполне понимает, как ИИ доказывает математические теоремы (Брайан Дэвис "Куда движется математика?") и как строит физические модели (Сергей Попов "Маглы в мире андроидов"). Это является психологической проблемой для человека, и противоречит нормам развития науки, но мы уже 60 лет не знаем, как распознает перцептрон, и что? Педагоги так живут 2,6 миллиона лет. Неудобно, конечно, но как-то привыкли. С другой стороны, все известные методы обучения можно попытаться перевести в компьютерную плоскость и применить для обучения программы. Есть и еще пути развития ИИ - кооперация с человеком, кооперация с другой программой, противодействие другой программе; последнее и было использовано при обучении программы AlphaGo. Кстати, для совместной с человеком деятельности робота уже есть название - "коллаборативная робототехника".
В упомянутой статье "Может ли машина мыслить" был предъявлен некий взгляд на путь, который мог бы привести к возникновению того, что человек, хотя бы с сомнениями, назвал бы человеческим интеллектом. Там же были разобраны многие возражения против возможности человекоподобного ИИ, и показана некорректность этих возражений. С тех пор ситуация продвинулась, например, программа Watson "знает, что она знает", она сравнивает и ранжирует алгоритмы - что это, как не самосознание? Причем в этой программе есть специальный блок WatsonPaths, который показывает человеку пути, по которым программа шла к ответу (в результате эта программа стала учить студентов-медиков идти к диагнозу). Некоторые авторы, защищая свою "самость", часто вопрошают, а "понимала ли" программа, что слышала и что говорила? Но если спросить человека, да хотя бы себя самого, что такое "понимание", то окажется, что понимание текста - это определение, исходя из контекста, в каком смысле употреблено то или иное многозначное слово. Если же речь идет не о тексте, а имеется в виду общение, то это определение субъективного смысла того или иного слова - конкретно, для этого собеседника и в конкретной ситуации. При таком определении для понимания нужно вырасти в рамках конкретной культуры и накопить соответствующие знания. Аналогичный процесс вполне может быть реализован и для компьютера; только идти он будет на порядки быстрее. Идея эволюционирующего социума ИИ есть в фа