БОЛЬШАЯ УЕДИНЕННАЯ ВОЛНА ДЖОНА СКОТТА РАССЕЛА
Богатство мира в оригинальных людях... Воспоминание
об этих людях и история их жизни — сумма его силы,
его священная собственность на вечные времена.
Если обдумать все, что мы вспомнили или узнали о науке того времени, то становится ясно, что наблюдение и научное описание уединенной волны не столь уж случайны. Удивительно, скорее, то впечатление, которое произвела эта волна на ее первооткрывателя, посвятившего ей значительную часть своей богатой событиями жизни. Здесь судьба явления связана с судьбой человека, его открывшего, и стоит немного познакомиться с его жизнью. Открытие уединенной волны не описано в курсах истории физики, математики и механики, и имени Рассела нет в справочниках о биографиях выдающихся деятелей этих наук. Первое жизнеописание Рассела появилось лишь в 1977 г.: «Джон Скотт Рассел — великий инженер и кораблестроитель викторианской эпохи». Ее автор, английский профессор Дж. Эмерсон, испытывал немалые трудности из-за «бедности первоисточников и обескураживающе сильного стирающего влияния времени». Мы познакомимся лишь с основными событиями его жизни, связанными с историей солитона.
До роковой встречи
Дж. С. Рассел родился в Шотландии недалеко от Глазго в семье священника. Отец надеялся, что сын пойдет по его стопам, но очень рано обнаружилась склонность мальчика к точным наукам, и он стал изучать их в трех шотландских университетах (из существовавших тогда четырех). Он слушал лекции в университетах Эдинбурга, Глазго и Сент-Андрю (самый старый университет в Шотландии, основан в 1411 г., находится вблизи Эдинбурга) и окончил первоначальный курс наук, получив в 16 лет степень бакалавра *).
*) в Англии это низшая университетская степень, получаемая после окончания двух-трех курсов; следующая степень после окончания учебы в университете — магистр, а затем — доктор соответствующих наук.
Столь раннее начало в то время не было редкостью. Например, Томас Юнг, к 14 годам в совершенстве владевший десятью языками, в 20 лет публикует первую научную работу и в 22 года он уже доктор медицины. Гамильтон в 13 лет уже владеет тринадцатью языками, а в 16 лет читает «Небесную механику» Лапласа и находит в ней ошибку. В Шотландии вообще было принято поступать в университет в возрасте 16—17 лет, но особо одаренные дети начинали учебу и раньше. Уильям Томсон в 8 лет посещает в университете Глазго лекции своего отца, профессора математики. В десятилетнем возрасте он официально зачислен студентом университета, а в 15 лет публикует первую научную работу. В 21 год он заканчивает еще и Кембриджский университет, а в 22 года уже становится профессором физики в Глазго. Максвелл по традиции поступил в Эдинбургский университет в возрасте 16 лет, но годом раньше он уже опубликовал в трудах Эдинбургского Королевского общества свою первую научную статью об овальных кривых. В 19 лет он заканчивает Эдинбургский университет, а еще через три года — Кембриджский. Это тоже было традицией, так как образование, приобретенное в шотландских университетах, ценилось меньше, чем то, которое получали студенты в «главных» университетах Британских островов — Кембриджском и Оксфордском. В возрасте 25 лет Максвелл уже профессор Абердинского университета (четвертый шотландский университет).
Конечно, не у всех жизнь складывалась так легко. Путь в науку Рассела не был простым, но по его началу можно судить, что Джон был довольно одаренным юношей.
После окончания университета он два года работает на фабрике, затем преподает в Эдинбурском университете, и его лекции пользуются успехом у студентов. В 1832—1833 гг. он читает курс лекций по натурфилософии вместо скончавшегося профессора Лесли.
Джон Лесли (1766—1832) был известным ученым, наибольшее признание заслужили его исследования по испусканию и поглощению тепла и изобретенные им приборы. Приглашение двадцатичетырехлетнего Рассела читать лекции вместо Лесли говорит о том, что его знания и педагогические способности ценились достаточно высоко. Тем не менее на место Лесли был избран профессором сверстник Рассела Джемс Дэвид Форбс (1809—1868), который начал вести экспериментальную работу по физике и впоследствии приобрел известность исследованиями в теории теплопереноса и ледников. Профессор Форбс первым сумел оценить талант Максвелла. Он докладывал Эдинбургскому Королевскому обществу первую научную работу юноши и впоследствии предложил ему принять участие в конкурсе на вакантное место профессора физики в Абердинском университете.
Расселу, видимо, не была суждена спокойная университетская карьера. В 1838 г. он еще раз попробовал стать профессором Эдинбургского университета. На этот раз освободилась должность профессора математики, но несмотря на рекомендации самого Гамильтона, аттестовавшего Рассела как «человека талантливого, активного и изобретательного», получить ему эту должность также не удалось. Почему так сложилось, мы не знаем. Возможно, что Рассел был слишком независимым, беспокойным и увлекающимся человеком для академической карьеры. В 1857 г. Максвелл, тогда уже профессор Абердинского университета, написал о системе подбора профессоров в шотландских университетах: «...Они хотят иметь профессорами угодных им людей, заинтересованных в преподавании того, что выгодно определенному узкому кругу... Их легче подчинить влиянию родителей и местной прессы». Так или иначе, но жизнь Рассела в результате пошла по иному, более беспокойному пути.
Тем временем он изобрел паровой экипаж, и в 1834 г. была даже основана Шотландская компания паровых экипажей. Она просуществовала недолго, но благодаря работе в этой компании Рассел приобрел некоторую известность как талантливый инженер-изобретатель. Когда другая компания (Union canal Company) решила заняться навигацией паровых судов по каналу, соединяющему Эдинбург и Глазго, ему предложили исследовать возможности осуществления этого предприятия. Там и состоялось первое знакомство Рассела с уединенной волной, о котором он впервые доложил в 1838 г. Подробное описание этого наблюдения и выполненных им экспериментов было опубликовано в 1844 г. («Доклад о волнах»).
Встреча с уединенной волной
И глубоко впечатленье
В сердце врезалось ему.
В то время для перевозок по каналу использовали небольшие баржи, которые тащили лошади. Для того чтобы выяснить, как нужно строить эти баржи при переходе от лошадиной тяги к паровой, Рассел проводил эксперименты с баржами различной формы, движущимися с разными скоростями. В ходе этих опытов он обнаружил явление, которое описал в «Докладе о волнах»:
«Я следил за движением баржи, которую быстро тянула по узкому каналу пара лошадей, когда баржа неожиданно остановилась; но масса воды, которую баржа привела в движение, не остановилась. Вместо этого она собралась около носа судна в состоянии бешеного движения, затем неожиданно оставила его позади, катясь вперед с огромной скоростью и принимая форму большого одиночного возвышения, т. е. округлого, гладкого и четко выраженного водяного холма, который продолжал свой путь вдоль канала, нисколько не меняя своей формы и не снижая скорости. Я последовал за ним верхом, и когда я нагнал его, он по-прежнему катился вперед со скоростью приблизительно восемь или девять миль в час, сохранив свой первоначальный профиль возвышения длиной около тридцати футов и высотой от фута до фута с половиной. Его высота постепенно уменьшалась, и после одной или двух миль погони я потерял его в изгибах канала. Так в августе 1834 г. мне впервые довелось столкнуться с необычайным и красивым явлением, которое я назвал волной трансляции; теперь это название общепринято.
С тех пор я обнаружил, что такие волны играют важную роль почти во всех случаях, когда жидкость оказывает сопротивление движению, и пришел к убеждению, что к тому же типу относятся огромные движущиеся повышения уровня моря, которые с регулярностью обращения небесного тела входят в наши реки и катятся вдоль наших побережий.
Для подробного изучения этого явления с целью точно установить его природу и управляющие им законы я придумал другие, более удобные способы его вызвать... и применил разнообразные методы наблюдений».
Рассел установил следующие основные свойства уединенных волн.
1. Постоянство скорости и неизменность формы отдельной уединенной волны. 2. Зависимость скорости v от глубины канала h и высоты волны у0: , где g — ускорение свободного падения; при этом предполагается, что . 3. Распад достаточно большой волны на две или более уединенные волны: «Волна примет... свою обычную форму... и будет идти вперед, сохраняя объем и высоту; она освободится от лишнего вещества, которое двигалось с ней, оставит его позади, и эта оставшаяся волна будет следовать за ней, но с меньшей скоростью, так что, хотя сначала две волны были соединены в одну основную, они затем отделяются друг от друга и все больше и больше расходятся по мере продвижения» (См. рис. 2.1 — рисунок Рассела).
4. Наблюдаются только волны повышения. Рассел также однажды отметил, что «большие первичные волны трансляции проходят друг через друга без каких-либо изменений, таким же образом, как и малые колебания, производимые упавшим на поверхность воды камнем». В дальнейшем он, правда, не возвращался к этому явлению, которое так поразило ученых, вновь открывших его 130 лет спустя при совсем иных обстоятельствах.
Между прочим, повторить, казалось бы, такой простой опыт Рассела на самом деле не так-то просто. В этом убедились участники конференции «Солитон-82», съехавшиеся в Эдинбург из 24 стран на конференцию, приуроченную к столетию со дня смерти Рассела. Они попытались получить уединенную волну на том самом месте, где ее наблюдал Рассел. Канал сохранился, и по-прежнему по нему плавают лодки и баржи, многие из которых сохранили старинные формы. Все вроде бы благоприятствовало предприятию. Но то ли из-за замены лошадиных сил человеческими (энтузиасты на время стали бурлаками), то ли из-за того, что на берегу за полтораста лет выросли деревья, то ли из-за плохой погоды, то ли по какой-то другой причине, а волна из уединения не вышла. Не получился солитон!
Рассел ввел довольно тонкую классификацию волн, различая «обособленные» (уединенные) и «стадные» (групповые) типы и подразделяя их на четыре рода (обратите внимание на сходство этой классификации с зоологической). К стадным он отнес обычные ветровые волны, группы волн, которые мы теперь называем волновыми пакетами, а также капиллярные волны. Он отличал обособленные волны разного рода, выделил наиболее интересовавшую его уединенную волну в первый род и назвал ее «большой» или «первичной» волной трансляции. Все эти наблюдения и их обобщения говорят о выдающейся наблюдательности Рассела и его изобретательности в постановке опытов. В то же время он глубоко обдумывал результаты этих опытов, что привело к его новым идеям в кораблестроении. Но об этом позже, а сейчас нас интересует, как была воспринята уединенная волна другими учеными.
Этого не может быть!
Многочисленны чудеса в небесах и на земле, но они
проходят мимо них и не обращают на них внимания.
На континенте работа Рассела, видимо, не была замечена. Однако в Англии этой работой заинтересовались Эри и Стокс. К сожалению, Гамильтон, который много знал о волнах и, в частности, первым понял, что скорость движения небольшого пакета волн (групповая скорость) может отличаться от скорости распространения самой волны, не проявил интереса к новым наблюдениям. В это время он был уже увлечен открытым им обобщением комплексных чисел — кватернионами (это система своеобразных чисел с тремя мнимыми единицами, тесно связанных с векторами в пространстве). Этому увлечению он не изменил до конца жизни.
Королевский астроном Джордж Биддел Эри (1801—1892) обладал многими талантами и быстро стал заметной фигурой в английской науке и в обществе. В 22 года Эри заканчивает Кембриджский университет, в 25 лет он — его профессор, в 27 лет — директор университетской обсерватории, а в 34 года он становится директором знаменитой Гринвичской обсерватории и остается на этом посту в течение 45 лет! Эри много сделал для науки, особенно же он способствовал использованию научных достижений в жизни общества. О его деятельности по организации первой в мире службы точного времени можно прочесть в очень интересной и богато иллюстрированной книжке «Гринвичское время» *).
*) Хауз Д. Гринвичское время: Пер. с англ. — М.: Мир, 1983.
Эри придирчиво изучил доклад Рассела и в своей работе «Приливы и волны», опубликованной в 1845 г., подверг критике его выводы об уединенной волне. Он отмечает, что формула Рассела для скорости уединенной волны не получается из теории длинных волн на мелкой воде, утверждает, что длинные волны в каналах не могут сохранять постоянную форму, и заключает: «Мы не склонны соглашаться с тем, что эта волна заслуживает эпитетов «большая» или «первичная»...» Эта работа сыграла двойственную роль в судьбе уединенной волны. С одной стороны, в ней был правильно поставлен вопрос о ее математическом описании с помощью лагранжевой теории «мелкой воды», а не «мелкой волны». С другой стороны, чересчур категорическое отрицание правильности наблюдений и выводов Рассела таким известным специалистом, как Эри, не способствовало увеличению интереса к этому явлению, а кто же хочет заниматься неинтересными проблемами!
Здесь уместно вспомнить, что за свой чрезмерно «здоровый научный консерватизм» Эри вскоре пришлось поплатиться. Как раз в 1845—1846 гг. произошли шумные события, связанные с открытием планеты Нептун. Эри одним из первых заметил нерегулярности в движении планеты Уран, но когда молодой математик Джон Адамс представил ему вычисления, из которых как будто следовало существование еще одной планеты, Эри отнесся к этому крайне скептически. Лишь после того, как Леверье независимо пришел к тем же выводам, что и Адамс, Эри дал указания о поисках новой планеты, но тем временем она уже была обнаружена немецкими астрономами. Заметим, что Леверье также не сумел убедить своих французских коллег уделить хоть немного времени проверке его предсказания. Подробности этой поучительной истории можно найти в небольшой книжке «Планета Плутон» *). Заметим, что Эри был весьма последовательным консерватором. В частности, ему принадлежит также несколько сомнительная честь быть одним из главных могильщиков машины Бэббеджа. В ответ на запрос премьер-министра он охарактеризовал проект Бэббеджа как абсолютно бесполезный.
*) Уайт А. Планета Плутон: Пер. с англ. — М.: Мир, 1983.
Джордж Габриель Стокс (1819—1903) увлекался гидродинамикой, еще будучи студентом Кембриджского университета, и написал свое первое научное сочинение, в котором исследовал движение жидкости на плоскости. Впоследствии он много занимался гидродинамикой вязкой жидкости (уравнение Навье—Стокса), теорией упругости, «чистой» математикой (его имя носит важная теорема в математическом анализе), а также различными прикладными исследованиями. Историки науки считают его одним из основателей современной гидродинамики. В своей работе «О колебательных волнах» (1847 г.) он подходит к наблюдениям Рассела с большей осторожностью чем Эри, но и его заключение гласит, что волны не могут сохранять постоянную форму даже в случае пренебрежимо малой вязкости. Иными словами, уединенная волна должна была бы распадаться и в том случае, если бы не теряла энергию на трение.
А все-таки она существует!
После этой уничтожающей критики об уединенной волне надолго забыли все, кроме самого Рассела. Мысли его постоянно возвращаются к ней. Приближаясь к старости, он пишет: «Это самое прекрасное и необычайное явление; день, когда я впервые увидел его, был лучшим днем моей жизни. Никому никогда не посчастливилось наблюдать его раньше или, во всяком случае, понять, что оно значит. Теперь оно известно как уединенная волна трансляции. Никто прежде и вообразить не мог, что уединенная волна возможна. Когда я описал ее сэру Джону Гершелю, он сказал: «Это просто вырезанная половина обычной волны». Но это не так, поскольку обычные волны идут отчасти выше, а отчасти ниже поверхности воды; кроме того, ее форма совсем иная. Это не половина волны, а, несомненно, вся волна целиком, с тем отличием, что волна как целое не находится попеременно то ниже, то выше поверхности, а всегда выше ее. Этого вполне достаточно, чтобы такой холм воды не стоял на месте, а двигался».
Итоги размышлений Рассела об уединенной волне были опубликованы в вышедшей уже после его смерти книге «Волны трансляции в океанах воды, воздуха и эфира», которая осталась незамеченной.
...взять хотя бы «Грейт Истерн», размеры и мощь
которого, кажется, лежат за пределами человеческого
воображения...
М. Фарадей
Я мальчиком мечтал, читая Жюля Верна,
Что тени вымысла плоть обретут для нас,
Что поплывет судно громадней Грит-Истерна,
Что полюс покорит упрямый Гaттерaс.
В. Брюсов
Исследования различных видов волн, образующихся при движении судна, позволили Расселу обосновать новый подход к постройке кораблей, основанный на выборе таких обводов, которые позволяют судну тратить меньше энергии на создание волн. Результатом этого явилось его участие в разработке проекта и постройке крупнейшего парохода того времени «Грейт Истерн» («Великий Восточный»). Работа его над проектом началась в 1853 г., а постройка после ряда неудач и несчастий была закончена в 1854 г. Это судно в 1860 г. совершало регулярные рейсы в Индию, а в 1865—1866 гг. с него была проложена кабельная телеграфная линия через Атлантический океан. (Драматическую историю этого грандиозного предприятия увлекательно описал Стефан Цвейг: «Звездные часы человечества».)
Огромные размеры (207 м в длину и 25 м в ширину) и мощность двигателей (две паровые машины общей мощностью около 8 тыс. л. с.) поражали воображение современников.
Корпус корабля был железный, помимо винтов он был снабжен двумя боковыми колесами и шестимачтовой парусной оснасткой. О качестве проекта специалисты говорили в конце века, что если бы потребовалось построить новый «Грейт Истерн», то пришлось бы в точности следовать системе конструирования, разработанной Расселом. Помимо этого, современники знали Рассела как выдающегося инженера-изобретателя и одного из главных основателей Института кораблестроения. Он опубликовал около пятидесяти работ, большая часть которых связана с кораблестроением, волнами, паровыми двигателями, в том числе и книгу «Современная система кораблестроения».
Реабилитация уединенной волны
Я гимны прежние пою...
Еще при жизни Рассела ученые молодого поколения Жозеф Валентин де Буссинеск (1842—1929) и его сверстник лорд Рэлей, учившийся, между прочим, у Стокса, сумели найти приближенное математическое описание формы и скорости уединенной волны на мелкой воде. Позже появились еще две-три математические работы об уединенной волне, а также были повторены и подтверждены опыты Рассела. Казалось, все стало ясно. Тем не менее споры о существовании уединенной волны в узком кругу специалистов не прекращались — слишком велик был авторитет Эри и Стокса.
Наибольшую ясность в эту проблему внесли голландские ученые Дидерик Иоханнес Kортевег (1848—1941) и его ученик Густав де Фриз, которые в 1895 г. нашли уравнение, наиболее точно описывающее основные эффекты, наблюдавшиеся Расселом. Обобщив метод Рэлея, они получили довольно простое уравнение для волн на мелкой воде и нашли его периодические волновые решения. Эти волны, как и волны Герстнера, имеют несинусоидальную форму и становятся приближенно синусоидальными, только если их амплитуда очень мала (рис. 2.2, а). При увеличении длины волны они приобретают вид далеко отодвинутых друг от друга горбиков (рис. 2.2, б), а при очень большой длине волны (в пределе, бесконечно большой) остается один горбик, который и соответствует уединенной волне (рис. 2.2, в).
Волны, изображенные на рис. 2.2 б, можно наблюдать на отмелях, пока их вершинка не начинает деформироваться и они не опрокидываются. Форму волн Кортевега и де Фриза нельзя описать так просто, как форму волны Герстнера, ее можно представить только с помощью так называемых эллиптических функций, открытых Абелем и изученных другими выдающимися математиками, в особенности Карлом Якоби (1804—1851), братом известного петербургского академика Бориса Семеновича Якоби (1801—1874).
Уравнение Кортевега — де Фриза называют теперь КдФ-уравнением, и ему суждено было сыграть большую роль во втором рождении солитона в наше время. Для физиков оно важно тем, что с его помощью можно описывать не только волны на мелкой воде, но и многие другие волны. Для математиков оно послужило стартовой площадкой при построении глубокой и важной математической теории. Для «собственно математиков» история солитона начинается с КдФ-уравнения. Не забудем, однако, что они в свое время не сумели разглядеть глубин, таящихся в уравнении мелкой воды, и основательно забытая работа Кортевега и де Фриза вернулась к новой жизни лишь через 70 лет в основном усилиями физиков. Авторы не подозревали, конечно, о судьбе, уготованной их уравнению. Они просто честно разобрались в том, что сделали до них другие, выяснили, кто прав, кто неправ и почему, и изложили все так, чтобы каждый, кто обратится к этой проблеме, мог бы разобраться в сути дела и в вычислениях. Короче говоря, они сделали все, что могли, но тем не менее и после этого уединенная волна... ушла в уединение дальних углов научных библиотек.
Может быть, и сами авторы не придавали большого значения своей работе. Кортевег прожил долгую жизнь и был известным ученым (почти сорок лет Кортевег занимал кафедру математики Амстердамского университета), однако о его, с нашей точки зрения, главной работе почти никто не вспоминал при его жизни, и она не упоминается в его посмертной биографии (1945 г.). Де Фриз был преподавателем гимназии, членом Голландского математического общества. После защиты диссертации, составившей основу его статьи с Кортевегом, он в 1896 и 1897 гг. опубликовал две статьи о циклонах. Больше о нем пока ничего не известно. По-видимому, де Фриз, как и Кортевег, к исследованию волн больше никогда не возвращался.
Изредка новые поколения ученых, занимавшихся проблемами гидродинамики, возвращались к обсуждению КдФ-уравнения и уединенных волн. Такие вспышки интереса наблюдались около 1925 г. и после 1945 г. В 1946 г. Михаил Алексеевич Лаврентьев (1900—1980) дал первое математически строгое доказательство существования уединенной волны. Это доказательство было очень сложным, более простое нашел американский математик Курт Фридрихе в 1954 г. Примерно в то же время были проделаны тщательные опыты с уединенными волнами, в которых использовалась киносъемка. Эти достижения оставались известными лишь узкому кругу специалистов.
Изоляция уединенной волны
Мне известно, сколь бессилен одиночка против духа
времени.
То, что уединенные волны оказались на каких-то чердаках огромного здания науки, на самом деле можно понять. Действительно, чем волны на воде отличаются от хорошо изученных световых волн, радиоволн или волн, с помощью которых описывают квантовые явления? Все эти волны можно складывать — вспомним принцип Гюйгенса или объяснение интерференции и дифракции волн. При наложении двух волн возникает волна, форма которой определяется простым алгебраическим (или векторным) сложением двух исходных волн. С этим свойством световых волн, в сущности, и была связана победа волновой теории света, описанная выше. Это свойство волн лежит в основе радиосвязи и телевидения, а в квантовой теории возможность складывать волны заложена в фундамент всей теории. На математическом языке все это вытекает из линейности описывающих эти волны уравнений. К одному решению можно добавить другое и получить новое решение. Если увеличить или уменьшить амплитуду некоторого решения (умножить ее на число), то также получим новое решение.
Для волн в жидкости это неверно, складывать можно лишь волны очень малой амплитуды. Но если мы попытаемся сложить волны Герстнера или волны КдФ, то не получим не только новой волны Герстнера или КдФ, но и вообще волны, которая могла бы существовать. На математическом языке это означает, что уравнения гидродинамики нелинейны.
Конечно, свойство линейности звуковых, световых и радиоволн лишь приближенное. При распространении в среде волн с большой амплитудой это свойство нарушается. Например, в акустике давно было известно, что так называемые ударные волны сильно отличаются от обычных. Одним из первых это подметил Рассел. В своей книге он замечает, что звук пушечного выстрела (ударная волна) распространяется значительно быстрее, чем команда открыть огонь. Нелинейные эффекты в оптике также возможны, но их начали серьезно изучать лишь после того, как были созданы лазеры.
В общем, время от времени отдельные нелинейные взаимодействия волн в акустике, оптике и радиофизике рассматривались, однако их настоящее исследование началось лишь в середине нашего столетия. Тогда же появились «нелинейная оптика», «нелинейная акустика», «нелинейная радиофизика» и другие «нелинейные науки». «Исконно нелинейная» гидродинамика, в которой нелинейность проявляется уже в самых простых явлениях, в течение почти столетия развивалась в полной изоляции от «линейной» физики. Неудивительно, что ничего похожего на уединенную волну Рассела в других волновых явлениях никто не искал и не увидел. До тех пор, пока линейность считали одним из основных свойств волновых явлений, уединенной волне, само существование которой обусловлено нелинейностью, суждено было слыть любопытным, но экзотическим явлением, интересным лишь для специалистов по гидродинамике.
Волна или частица?
Часто достаточно изобрести одно новое слово, и это
слово становится творцом.
Роковую роль в судьбе уединенной волны сыграло также еще одно обстоятельство. Ни Рассел, ни ученые, изучавшие уединенную волну в течение последующих 120 лет, не замечали ее необыкновенного сходства с частицей. Мы уже обратили внимание на наблюдение Расселом двух уединенных волн, которые после столкновения полностью сохраняют форму и скорость движения. Правда, частицы эти довольно своеобразные — еще Рассел заметил, что «большая» частица (высокая волна) всегда движется быстрее.
Более тонкое явление, которого он не увидел, состоит в следующем. Когда высокая волна догоняет низкую, на первый взгляд кажется, что она проходит через нее и идет дальше, подобно тому как мелкие волны от брошенного камня проходят друг через друга. Если бы у Рассела был киноаппарат, он мог бы увидеть, что на самом деле в случае уединенных волн все происходит не так. Когда обе волны соприкасаются, большая замедляется и уменьшается, а малая, наоборот, ускоряется и растет. Когда малая вырастает до размера большой, а большая соответственно уменьшается, то волны отрываются друг от друга, и далее бывшая малая уходит вперед, а бывшая большая отстает. Как видно из рис. 2.3, после такого взаимодействия большая волна как бы «сдвигается» вперед, т. е. уходит немного дальше того положения, которое она занимала бы, если бы никакого взаимодействия не было, а малая, наоборот, отстает, «сдвигается» назад (положения невзаимодействующих равномерно движущихся волн изображены на рисунке штриховыми линиями).
Таким образом, волны вовсе не проходят свободно друг через друга! Они как бы сталкиваются и отталкиваются друг от друга подобно теннисным мячам.
Аналогия с теннисными мячами позволяет понять и только что описанный «сдвиг» уединенных волн при столкновении, который никак нельзя объяснить, если считать, что они свободно проходят друг через друга. Для описания столкновения двух равномерно летящих (без вращения) по одной прямой мячей удобно представить себе сначала их относительное движение (рис. 2.4). Если скорость левого мяча V1, а скорость правого V2, то точка О, расположенная посредине между их центрами O1 и O2, движется с постоянной скоростью V = ½ (V1 + V2). Точка О, конечно, представляет собой центр тяжести (точнее, центр масс) мячей, который сохраняет состояние равномерного прямолинейного движения, если на мячи не действуют внешние силы. Пока мячи не соприкасаются, точка O1 движется относительно точки О со скоростью v = ½ (v1 - v2), а O2 — со скоростью - v. В момент соприкосновения t = t0 мячи начинают сминаться, а их центр масс продолжает двигаться со скоростью V. Через небольшой промежуток времени ½ (t'0 - t0) относительное движение мячей прекращается, и они начинают отталкиваться друг от друга. Таким образом, в момент ½ (t'0 + t0) вся кинетическая энергия относительного движения перешла в потенциальную энергию сжатой резины, и «центры» мячей O1 и O2 движутся в этот момент с одинаковой скоростью V. За время ½ (t'0 - t0) мячи принимают прежнюю форму. Если пренебречь потерями энергии на разогрев мячей и энергией остаточных колебаний резины, то в момент t'0 они будут двигаться относительно центра масс О со скоростями - v и v. После удара направление относительного движения просто изменится на противоположное, так что теперь O1 движется со скоростью V - v = v2, а O2 — со скоростью V + v = v1.
Итак, мячи не просто обменялись скоростями, но и, сверх того, как ясно видно на рисунке, центр O2 теперь несколько опережает точку O'1, в которой находился бы первый мяч, если бы столкновения не было, а O1 несколько отстает от O'2. Такой сдвиг всегда происходит, если время взаимодействия мячей t'0 - t0 достаточно мало. Читатель может сам убедиться, что при достаточно большом времени взаимодействия O2, наоборот, отстанет от O'1, а O1 опередит O'2. Hемного труднее найти то значение времени взаимодействия, при котором O2 совпадает с O'1, а O1 — c O'2 (о т в е т: , R — радиус мячей). Интересно также найти O2 - O'1 = O'2 - O1 при известных значениях v1, v2, t'0 - t0 (о т в е т: ).
Эффект ускорения и отставания становится тем более заметным чем больше размер мячей и меньше их относительная скорость (здесь, конечно, предполагается, что время взаимодействия t'0 - t0 не очень сильно зависит от относительной скорости). Такую же зависимость от относительной скорости можно наблюдать и во взаимодействии уединенных волн. Конечно, она сложнее, так как уединенная волна не имеет резкой границы и отличается от мяча и в других отношениях.
Аналогию можно сделать еще более наглядной, если изображать мячи прямоугольниками, высота которых увеличивается пропорционально кинетической энергии. Тогда их столкновение будет выглядеть совсем похожим на столкновение солитонов. Позже мы познакомимся с другими уединенными волнами, форма которых не зависит от скорости и которые еще больше похожи на частицы.
Почему же все-таки так долго никто не замечал этого самого удивительного свойства уединенной волны? Понятно, что Рассел мог не увидеть этого, хотя, учитывая его необычайную наблюдательность, это тоже как-то надо объяснить. Но ведь уже в 1952 г. была проделана целая серия опытов с уединенными волнами в современном варианте лотка братьев Веберов и с использованием киносъемки. С применением современной техники наблюдение столкновения уединенных волн и обнаружение описанных только что эффектов, казалось бы, не такое трудное дело! По-видимому, объяснение этой удивительной слепоты ученых может быть только одно — все, начиная с Рассела, упорно считали уединенную волну только волной, хотя и довольно необычной.
В какой-то степени в этом повинно и название «уединенная волна», подчеркивающее волновую природу явления. Поэтому когда в 1965 г. американские ученые М. Крускал и Н. Забуски, изучая явления столкновений уединенных волн с помощью электронной вычислительной машины, ясно увидели, что уединенные волны во многом подобны частицам, они немедленно убрали слово «волна», а из «уединенной» (solitary) составили термин «солитон» (soliton), созвучный электрону, протону и другим названиям элементарных частиц *).
*) Первоначально солитон был назван «солитроном», по созвучию с электроном. Однако в последний момент стало известно о существовании некоей фирмы «Солитрон», и авторам пришлось убрать «р», чтобы не вступать с ней в тяжбу по поводу незаконного использования «торговой марки». Фирма давно прогорела, а солитон живет и здравствует!
Как «наблюдают» солитоны на вычислительных машинах в так называемых «численных экспериментах», будет рассказано позже.