Многоликий солитон — страница 5 из 11

РОДСТВЕННИКИ СОЛИТОНА

Правильно в философии рассматривать сходство даже

в вещах, далеко отстоящих друг от друга.

Аристотель

Пока уединенная волна понемногу начала выходить в свет, происходили другие события, связь которых с судьбой солитонов оставалась долгое время незамеченной. Речь идет о двух фундаментальных открытиях в далеких друг от друга областях естествознания — физиологии и гидродинамике. Хотя одно было чисто экспериментальным, а другое чисто теоретическим, сделал оба открытия один человек — Гельмгольц. Мы уже упоминали, что ему удалось измерить скорость распространения нервного импульса. В последовавших за этой основополагающей работой исследованиях была определена форма импульса и изучены многие детали механизма распространения импульсов в нервах. И только в наше время выяснилось, что нервный импульс — это своеобразная уединенная волна. Однако и сегодня еще нет окончательной, общепринятой теории явлений, происходящих в нервных волокнах живых существ при передаче по ним информации. В другой работе Гельмгольц обнаружил, что вихри в воде, описываемые уравнениями гидродинамики идеальной жидкости, должны обладать совершенно необычными свойствами, которые делают их похожими на частицы. Точнее, он обнаружил, что вихри в идеальной жидкости (т. е. несжимаемой и без трения) неразрушимы и взаимодействуют друг с другом подобно электрическим токам. Пользуясь современным языком, мы скажем, что вихри — это солитоноподобные возбуждения

Герман Гельмгольц и нервный импульс

В ту пору физика еще не считалась в числе хлебных

занятий. Отец объявил мне, что может помочь мне

в изучении физики, ...если я возьму в придачу и ме-

дицину. Я был не против того, чтобы изучать живую

природу и охотно согласился.

Г. Гельмгольц

Так началось формирование великого естествоиспытателя прошлого века, оказавшего глубокое влияние на развитие мировой науки. Его открытия в физике, математике, физиологии, психологии и медицине были широко признаны не только на его родине, в Германии, но и в Англии, Франции и в других странах, в которых начала развиваться наука. Гельмгольц счастливо сочетал в своей научной деятельности достоинства немецкой, английской и французской научных школ, а его многочисленные ученики не только прославились своими научными достижениями, но и основали собственные научные школы в разных странах. Как писал А. Г. Столетов, «Гельмгольц дорог нам не только как гениальный ученый, — он в то же время самый заслуженный из современных насадителей науки вообще и, в частности, в нашем отечестве».

Достаточно сказать, что среди учеников Гельмгольца были Генрих Герц, Петр Николаевич Лебедев и Иван Михайлович Сеченов, глубоко почитавшие своего учителя. И. М. Сеченов нарисовал такой портрет Гельмгольца: «От его спокойной фигуры веяло каким-то миром, словно он не от мира сего... он производил на меня впечатление, подобное тому, какое я испытывал, глядя на Сикстинскую мадонну в Дрездене».

Это необыкновенное впечатление, производимое личностью Гельмгольца, было результатом огромной внутренней духовной работы, которая началась уже в детстве. Эта работа не была легкой и требовала могучей воли. Приходилось преодолевать и внутренние (слабое здоровье), и внешние (материальные) препятствия. Чтобы лучше представить себе все это, познакомимся немного с биографией Гельмгольца.

Родился он 31 августа 1821 г. в Потсдаме в семье Школьного учителя. Его мать происходил а из английской семьи, переселившейся в Германию, среди ее предков были и французы. Гельмгольц горячо любил свою родину и гордился достижениями ее культуры, что не мешало ему высоко ценить и достижения других народов.



 Ему были чужды какие бы то ни было национальные предрассудки, от которых часто не были свободны даже выдающиеся ученые. Конечно, это немало способствовало тому, что к нему «тянулись» молодые энтузиасты науки из самых разных стран.

Все это, однако, пришло потом, а первые шаги были очень нелегкими. Семидесятилетний Гельмгольц вспоминал о своем детстве так: «Первые 7 лет я был болезненным мальчиком... рано обнаружился и некоторый недостаток в моем умственном складе: слабая память на вещи, не имеющие внутренней связи... мне было труднее, чем другим, запомнить вокабулы, неправильные грамматические формы, особенно обороты речи... для меня было мукой учить наизусть статьи в прозе...» Зато какую несравненную радость доставило этому мальчику первое знакомство с математикой и физикой, в которых все внутренне связано! «С величайшим усердием и радостью набросился я на изучение всех физических учебников, какие находил в библиотеке отца». Эта страсть к физике определила дальнейшую судьбу Гельмгольца. Все его достижения в физиологии нервной системы, зрения и слуха так или иначе связаны с физикой.

К чести педагогов гимназии, они вполне сумели оценить способности юноши, особенно к физике и математике. Несмотря на трудности с «вокабулами», Гельмгольц успешно закончил гимназический курс и поступил в Военно-медицинский институт в Берлине. Под влиянием выдающегося физиолога Иоганна Мюллера (1801—1858) он заинтересовался здесь гистологией и физиологией и в 1842 г. защитил диссертацию «О строении нервной системы беспозвоночных». В то время были известны нервные клетки и волокна, но как они связаны друг с другом, было неясно. Молодой Гельмгольц один из первых понял, что клетки и волокна соединены в единое целое — нейрон.

В 1843 Г. Гельмгольц был назначен военным врачом в Потсдаме. В этот период он и создал свою знаменитую работу «О сохранении силы», о которой рассказано в гл. 1. Несмотря на то, что значение этой работы было понято немногими, она принесла ее автору достаточно широкую известность, и в 1849 г. он был приглашен в Кенигсбергский университет профессором физиологии. Там он работал до 1855 г. и выполнил измерение скорости нервного импульса, о котором мы сейчас расскажем.

С этого времени Гельмгольц становится признанным ученым и отдает все силы науке. Растет и его слава. Его приглашают в Боннский университет, затем в Гейдельбергский. Признание его как физика, а не только как физиолога, пришло, когда ему одновременно предложили место профессора физики в Берлинском университете и кафедру экспериментальной физики в Кембридже. Гельмгольц не захотел покинуть Германию, и кафедру в Кембридже возглавил Максвелл. Последние годы жизни Гельмгольц, не оставляя собственные научные исследования, руководил Государственным физико-техническим институтом в Берлине. Умер он, всеми почитаемый, в родном Потсдаме 8 сентября 1894 г. За свою жизнь он успел сделать необычайно много. «Человек, вкладывающий в работу всю свою душу, всегда успевает больше...» (Максвелл).

Когда Гельмгольц в 1849 г. приступил к опытам по определению скорости распространения нервных импульсов, об их природе было известно довольно мало. Считалось, что они имеют электрическое происхождение и распространяются с огромной скоростью, недоступной прямому измерению.

Идея о том, что по нервам распространяется «животное электричество», была высказана Луиджи Гальвани еще в 1786 г. Однако после опытов Алессандро Вольта (1745—1827), убедивших всех, что никакого «животного электричества» нет, она была надолго оставлена и возродилась лишь к середине прошлого века. Особенно способствовал возрождению идей Гальвани сверстник и друг Гельмгольца, швейцарский физиолог Эмиль Дюбуа-Реймон (1818—1896), описавший свои опыты и давший им истолкование в обширном труде «Исследования по животному электричеству» (1848 г.) *). Работы Дюбуа-Реймона и других показали, что в живых организмах действительно вырабатывается электричество и что распространение нервного возбуждения связано с передачей электрических сигналов. При этом нервное волокно стали считать как бы разновидностью электрических проводов. Под влиянием Дюбуа-Реймона этими идеями заинтересовался Гельмгольц; он решил выяснить, верно ли такое убеждение. Результат поставленного им опыта оказался ошеломляющим — скорость движения импульса по нерву лягушки оказалась отнюдь не «огромной» — всего 30 м/с 100 км/ч! Это показалось настолько невероятным, что сам Иоганн Мюллер не поверил любимому ученику и отказался послать его статью в научный журнал.

*) Очень интересовался «животным электричеством» Фарадей: «Как ни удивительны электрические явления в неорганическом веществе, несравненно удивительнее электрические явления в нервной системе...».

Насколько сильным было впечатление от этого опыта, можно судить по воспоминаниям И. М. Сеченова, слушавшего в 1857 г. лекции Дюбуа-Реймона: «Особенно памятны мне его лекции о быстроте распространения возбуждения по нервам. Тут он положительно увлекся и рассказал с жаром всю историю этого открытия: сомнения Мюллера... его собственные мысли... и, наконец, решение задачи его другом Гельмгольцем».

Дальнейшая судьба нервного импульса

Опытами Гельмгольца наивное представление о нервном волокне как электрическом проводе было опровергнуто. Однако предложить что-то лучшее было не так-то просто. Начались долгие и трудные поиски настоящего механизма распространения импульсов по нервам, на которые ушло около ста лет. С современными представлениями мы познакомимся в последней главе, а сейчас сделаем лишь несколько замечаний о дальнейшей истории нервного импульса.

Сам Гельмгольц полагал, что при движении импульса происходит перемещение каких-то материальных частиц, но ничего более ясного предложить не сумел. В 1868 г. молодой немецкий физиолог Юлий Бернштейн сумел определить форму импульса. Она оказалась колоколообразной, примерно как у солитона Рассела. Впоследствии выяснилось, что этот «колокол» движется всегда с одной и той же скоростью и имеет приблизительно одну и ту же форму независимо от силы раздражения, породившего импульс.

В 1879 г. ученик Дюбуа-Реймона немецкий физиолог Лудимар Герман очень близко подошел к современным представлениям о математическом описании нервного импульса. Он уподобил его распространение горению бикфордова шнура. Для заданного шнура скорость и форма бегущей по нему уединенной волны горения, очевидно, постоянны (если m — количество пороха, сгорающего в единицу времени, а М — количество пороха в шнуре на единицу его длины, то скорость равна v = m/М; для бикфордова шнура обычно подбирают m и М так, что v = 1 см/с).

Позднее Герман предложил более реальную модель, уподобив нерв телефонному кабелю, в котором, однако, волны должны взаимодействовать нелинейно *). Решать подобные математические задачи в то время, однако, не умели, и даже сам Герман счел, что математическую теорию нервного импульса разработать невозможно.

*) При прохождении импульса, как и при движении пламени, расходуется энергия, которую нужно восполнять, иначе новый импульс не пройдет. Тем более не может быть и речи о сложении волн горения. Две встречные волны пламени уничтожают друг друга, чем, как известно, пользуются для тушения степных и лесных пожаров.

Примерно в то же время, в начале нашего века, Бернштейн выдвинул близкую к современной физико-химическую теорию процессов, происходящих в нервном волокне (это так называемая «мембранная гипотеза», о которой будет рассказано в последней главе). Современники отнеслись к идеям Бернштейна довольно прохладно.

В общем, история нервного импульса развертывалась примерно по такому же сценарию, как и история солитона Рассела. Раз в двадцать-тридцать лет делался заметный шаг вперед, но все происходило в узком кругу специалистов, и никто не замечал, что между нервным импульсом и уединенной волной Рассела существует глубокая связь.

Герман Гельмгольц и вихри

На долю Гельмгольца выпало указать весьма замеча-

тельные свойства вихревого движения... свойства вихре-

вых колец подали сэру У. Томсону мысль о возмож-

ности построить новую форму атомистической теории...

Л. Больцман

Нервный импульс мало похож на частицу. Этим он, конечно, сильно отличается от солитона Рассела. На частицы гораздо более похожи вихри, и особенно вихревые кольца, удивительные свойства которых были открыты Гельмгольцем в 1858 г. С вихрями, как и с волнами, знаком всякий. В воде они возбуждаются так же легко, как волны, достаточно провести рукой по поверхности воды в ванне или закрутить ложкой чай в стакане. Каждый видел вихри, оставляемые веслами, и кольца табачного дыма. Возможно, кому-то встречались мощные атмосферные вихри — смерчи. В общем, что такое вихрь — объяснять не надо.

Наблюдения над вихрями и размышления об их удивительных свойствах, вероятно, побудили знаменитого французского философа и математика Рене Декарта (1596—1650) положить вихревое движение в основу объяснения всего наблюдаемого мира. В «Началах философии» он нарисовал картину Вселенной, пронизанной вихрями: «...предположим, что вся материя... разделена на части... что все они стали двигаться... двумя различными способами, а именно: каждая вокруг собственного средоточия, образовав жидкое тело, каковым я полагаю небо; кроме того, некоторые двигались совместно вокруг нескольких центров...» На рисунке из этого трактата (рис. 3.1) частицы в пространстве АЕI вращаются вокруг своих осей, образуя малые вихри, а все вместе вращаются вокруг центра S и т. д. Заметим, что в виде некоего вихря, разбросавшего планеты, представлял себе Солнечную систему и Кеплер, а о вращательном («коловратном») движении мельчайших частиц вещества много размышлял Ломоносов.




Ньютон легко уловил непоследовательности и противоречия в декартовой картине мира, и она, правда, после довольно упорного сопротивления ее сторонников, была оставлена. Однако, отбросив полностью все идеи Декарта, Ньютон отбросил и важную мысль о близкодействии. У Декарта всякое возмущение передавалось в пространстве только от одного вихря к другому, и поэтому не могло быть и речи об абсолютно пустом пространстве или распространении каких бы то ни было взаимодействий с бесконечной скоростью.

Понятие о дальнодействии предопределяло, вероятно, и то, что Ньютон более склонялся к представлению о свете как потоке частиц («корпускул»). Он, правда, весьма осторожно высказывался на эти темы. Например, обсуждая распространение света в веществе, он не исключает возможности каких-то волновых, периодических процессов («приступы легкого прохождения и легкого преломления»). Более того, Ньютон дал наброски контуров компромиссной теории, соединяющей достоинства корпускулярных и волновых представлений о свете. Отвечая на критику, высказанную его знаменитым современником и соперником Робертом Гуком *), он писал в 1672 г.: «...если мы предположим, что световые лучи состоят из маленьких частиц, выбрасываемых по всем направлениям светящимся телом, то эти частицы, попадая на преломляющие или отражающие поверхности, должны возбудить в эфире колебания столь же неизбежно, как камень, брошенный в воду...». С волновыми представлениями он связывает восприятие цвета, дисперсию. Однако Ньютон видел и очень серьезные возражения против чисто волновой картины: «По моему мнению, невозможно, что волны или колебания какой-либо жидкости распространяются по прямым линиям, не загибаясь...». Гук не смог дать ответа на возражения Ньютона. Впервые решил эту проблему знаменитый голландский ученый Христиан Гюйгенс (1629—1695), показавший также, каким образом в волновой теории можно получить закон преломления.

*) Науке, вероятно, повезло, что в Лондоне в одно и то же время жили и работали Ньютон и Гук, который был самым блестящим экспериментатором своего времени и человеком глубоких и разнообразных познаний. Столетиями значение Гука в науке недооценивалось; в наше время с этой несправедливостью покончено (см., например, книгу: Боголюбов А. Н. Роберт Гук. — М.: Наука, 1984).

Тем не менее волновая теория стала общепризнанной лишь в начале XIX в. И вот тут-то проявилась главная трудность — проблема эфира. Казалось естественным представлять эфир в виде идеальной (без трения) жидкости. Однако было столь же ясно, что световые волны мало похожи на звуковые. Так случилось, что стали думать о более сложных движениях в жидкостях, и естественно возродились, хотя и в совершенно новом обличье, вихри Декарта.

В 1861—1862 гг. Максвелл опубликовал несколько работ под общим названием «О физических силовых линиях», которым можно было бы дать подзаголовок «теория молекулярных вихрей и ее применение к электрическим, магнитным и световым явлениям».



Другой великий физик, Людвиг Больцман (1844—1906), один из создателей современной кинетической теории вещества, написал впоследствии к этим работам обширный комментарий. В нем он говорит, что «...этот цикл принадлежит к наиболее интересному, что только знает история физики...»

Максвеллова вихревая модель изображена на рис. 3.2, взятом из его работы. «...АВ представляет элекрический ток... шестиугольники выше и ниже АВ — вихри, а малые окружности, разделяющие их... представляют электричество...» Когда идет ток, «колесики» на линии АВ приводят во вращение вихри, те передают вращение через другие колесики дальше. Оси вихрей направлены по силовым линиям магнитного поля, а угловая скорость вращения вихря пропорциональна напряженности магнитного поля. С помощью этой модели Максвелл сумел получить уравнения, описывающие взаимодействие магнитного поля и токов и распространение электромагнитного поля от точки к точке с конечной скоростью. Именно этот гениальный скачок мысли от грубой механической модели к тончайшей и абстрактной теории, видимо, и вызвал восхищение Больцмана, который сам очень любил строить простые модели для самых сложных физических явлений.

Максвелл, однако, не был удовлетворен достигнутым. Он неоднократно подчеркивает, что это всего лишь модель, и впоследствии пытался выводить свои уравнения другими, более абстрактными способами. Тем не менее он постоянно пользуется физическими аналогиями, стремясь к наглядному пониманию сложных электромагнитных явлений. Особенно часто он сравнивал электромагнитные процессы с вихревыми движениями жидкости. Статью Гельмгольца о вихрях он хорошо знал и часто цитировал.

Статья эта была напечатана в «Журнале чистой и прикладной математики», основанном в 1826 г. немецким инженером и математиком-любителем Августом Леопольдом Крелле. В журнале были опубликованы многие выдающиеся работы, в первых номерах журнала были напечатаны статьи Абеля, котopoгo Крелле очень ценил и поддерживал. В статье Гельмгольца была разработана математическая теория вихрей в несжимаемой, невязкой (без трения) жидкости. Движения такой жидкости, обычно называемой идеальной, описываются уравнениями, выведенными Эйлером. Стокс первым ясно разделил движения жидкости на безвихревые и вихревые и подробно исследовал безвихревые движения. Гельмгольц поставил перед собой задачу понять законы движения и взаимодействия вихрей и сразу обнаружил удивительные явления.

Чтобы понять главные результаты Гельмгольца, нужно сначала уяснить себе, что такое вихревое движение и вихри. Вихри, которые легко создать в воде движением руки, живут очень недолго, и за ними трудно наблюдать. Понаблюдаем поэтому за вихрем, который образуется в ванне, когда мы выпускаем из нее воду. Наполним ванну, подождем, чтобы движения в воде успокоились, и осторожно вынем пробку, положив на поверхность воды над отверстием несколько коротких кусочков спичек. Если образуются вихри, то мы увидим, что спички будут двигаться по-разному. Одна, расположенная в центре вихря, быстро вращается вокруг своей оси («вокруг собственного средоточия»), а остальные вращаются совместно вокруг первой. Движение далеких спичек не связано с вращением вокруг «собственного средоточия». В центре вихря движение вихревое, а там, где спички не вращаются вокруг своей оси, оно безвихревое. Через некоторое время можно увидеть, что от середины вихря протягивается тонкая ножка и образуется воронка. Пока не образовалась воронка, мы имеем возможность наблюдать одиночный вихрь. Его ось вращения Гельмгольц назвал вихревой линией. Этот и другие вихри в воде живут недолго. Если закрыть отверстие в ванне, то вихрь быстро исчезнет.





Поведение идеальной жидкости, однако, разительно отличается от наблюдаемых движений воды. Гельмгольц доказал, что вихри в идеальной жидкости не могут исчезать или возникать. В воде они возникают только за счет того, что между соседними частицами жидкости существует трение (вязкость), посредством которого вращение одной частицы передается другой (вспомните модель Максвелла!). Он также доказал, что вихревая линия не может оканчиваться внутри жидкости, т. е. она либо замкнута, либо оканчивается на поверхности или на дне и стенках. Если жидкость движется как целое, то вихрь уносится, как лодка, общим потоком. Однако если нет других вихрей, то его центр остается неподвижным относительно окружающей воды.

Очень интересно взаимодействие двух вихрей. Если вихри вращаются в одном направлении, то они движутся по окружностям вокруг общего центра О, расположенного между ними, как показано на рис. 3.3. Если они вращаются в противоположных направлениях, то центр вращения находится вне отрезка O1O2. Особенно интересен случай, когда оба вихря вращаются в противоположных направлениях, но в остальном совершенно одинаковы. Тогда оба вихря движутся по прямой, составляя как бы одно целое (скорости v1 и v2 становятся одинаковыми, и точка О уходит в бесконечность). Все частицы жидкости внутри некоторого овала движутся относительно остальной части жидкости с постоянной скоростью (рис. З.4). В системе, относительно которой этот овал покоится, жидкость обтекает его, как она обтекала бы твердое тело в форме этого овала. Это замечательное явление было подробно изучено в работе Кельвина «О вихревом движении» (1869 г.), и мы будем называть эту похожую на частицу пару вихрей овалом Кельвина. Наблюдать пару вихрей в воде не очень легко, но, проявив некоторое терпение, можно увидеть их, возбуждая вихри в ванне плавным движением перевернутого ковшика (глубоко погружать его не надо). Следить за вихрями легче всего по их теням на дне, нужно только удачное освещение сверху. Овал, конечно, увидеть не удастся, но пара вихрей выделяется достаточно четко по их совместному движению. Заметим, что на мелкой воде вихри быстро затухают, а на более глубокой воде наблюдается на самом деле не пара независимых вихрей, а две воронки одного вихря, изогнутого дугой (см. рис. З.5).



Увидеть такую структуру пары вихрей довольно трудно (попробуйте!), но кольцевые вихри наблюдать очень легко.

Кольцевые вихри (или вихревые кольца) тоже изучил Гельмгольц, он же описал простые опыты, в которых можно их наблюдать *). Самое интересное явление — взаимодействие двух колец. Если в идеальной жидкости два одинаковых вихревых кольца движутся вдоль общей оси OO' в одном и том же направлении с одинаковыми скоростями, то они начинают притягиваться (рис. 3.6, а). При этом кольцо 1 расширяется и замедляет движение, а кольцо 2 стягивается, ускоряется и проскакивает через кольцо 1 (рис. 3.6, б). Как только это произойдет, кольцо 2 начинает расширяться и замедляться, а кольцо 1 — сужаться и ускоряться. Когда их размеры и скорости сравниваются (рис. 3.6, в), вся игра повторяется (рис. 3.6, г), и так до бесконечности.



*) Подробное описание опытов Гельмгольца и их усовершенствованных вариантов см., например, в книге: Опыты в домашней лаборатории. — М.: Наука, 1980. — Библиотечка «Квант», вып. 4.

Такую картину взаимодействия колец Гельмгольц и Кельвин получили чисто теоретически, исходя из основных уравнений гидродинамики идеальной жидкости. Гораздо труднее найти таким способом, что произойдет при взаимодействии колец, движущихся в разных направлениях. Подобные задачи начали исследоваться с помощью численных расчетов на больших ЭВМ лишь совсем недавно. Эти исследования подтвердили, что вихри и кольца во многом похожи на частицы. Еще раз подчеркнем, что частицы эти довольно необычные, и механика их отличается от ньютоновской. Первый закон Ньютона для вихрей изменяется. Изолированный вихрь всегда покоится относительно среды, а овал Кельвина или кольцо Гельмгольца движутся равномерно и прямолинейно, в покое они находиться не могут. Взаимодействие двух вихрей также не похоже на взаимодействие обычных точечных частиц, но взаимодействие пар вихрей или вихревых колец можно описывать на языке механики деформируемых частиц конечного размера. Эта аналогия не хуже и не лучше, чем описанная выше аналогия уединенных волн Рассела упругим мячам.

«Вихревые атомы» Кельвина

То, что вихри похожи на частицы, было ясно уже Кельвину. Именно это их свойство позволило предложить любопытную модель вихревых атомов. Представим себе, что Вселенная заполнена эфиром, который во всем подобен идеальной жидкости. Если при рождении Вселенной образовалось какое-то количество вихревых колец, то они, согласно Гельмгольцу, будут сохраняться, взаимодействуя, как было описано выше. Для того чтобы объяснить существование атомов различных типов, Кельвин рассматривал замкнутые вихревые линии с разным числом узлов (рис. 3.7).



Атомы Кельвина не удалось связать с какими-либо реальными частицами, да и сам Кельвин, похоже, не пытался это сделать. Его теория была надолго забыта, а после того как из физики было изгнано понятие эфира, казалось, что любые подобные теории совершенно бессмысленны. Тем не менее почти через сто лет стали появляться модели элементарных частиц, близкие по духу к теории Кельвина, с которой их роднит представление об элементарных частицах как о солитонах. Можно сказать, что Кельвин первый попытался построить солитонную модель элементарных частиц, и в этом смысле его идея оказалась очень живучей *).

*) Наиболее интересная особенность модели Кельвина — объяснение отличий атомов друг от друга чисто топологическими различиями вихревых нитей. (Об основных топологических понятиях см. книгу: Болтянский В. Г., Ефремович В. А. Наглядная топология. — М.: Наука, 1982. — Библиотечка «Квант», вып. 21.)

В речи, посвященной 300-летию со дня рождения Декарта, замечательный русский физик Николай Алексеевич Умов (1846—1915) сказал: «Возможно, что в мире мысли, как и в материальной природе, нет произвольного зарождения, а существует только развитие, эволюция; что современная мысль возникает на неосознаваемом фоне идей, переданных нам предшествующими поколениями». История идей, связанных с солитоном, вполне подтверждает эту гипотезу.

Лорд Росс и вихри в космосе

В одном мгновенье видеть вечность,

огромный мир — в зерне песка...

Уuльям Блейк

В то самое время, когда создавалась теория вихрей, человеку впервые удалось увидеть вихри в космосе.



Увидел их в 1848 г. астроном-любитель Уильям Парсонс (лорд Росс, 1800—1867). Он построил самый большой в то время телескоп-рефлектор длиной около 18 м с металлическим зеркалом диаметром 182 см. Размеры этого телескопа производили огромное впечатление. Еще большее впечатление произвели результаты сделанного на нем наблюдения спиральной структуры туманности М51 в созвездии гончих Псов (рис. 3.8). В последовавших за этим открытием многолетних наблюдениях Росса и других астрономов выяснилось, что подобную структуру имеют многие туманности.

Теперь мы знаем, что туманности — это гигантские галактики, состоящие из огромного числа звезд, межзвездной пыли и газа. Большинство галактик, в том числе и наша галактика, имеют спиральную структуру и подобны гигантским вихрям. Идея о вращении туманностей и сходстве их с вихрями в воде, стекающей в отверстие, не ускользнула, конечно, от внимания первооткрывателя, но показалась ему чересчур смелой: «В настоящее время было бы бессмысленным гадать о динамическом состоянии подобных систем... Их сходство с предметами, плывущими в водовороте, разумеется, должно дать толчок воображению, хотя существование там соответствующих условий невозможно. Еще более соблазнительная гипотеза может родиться, если рассмотреть орбитальное движение в сопротивляющейся среде, но все такие догадки ведут в тупик».

На самом деле они привели не в тупик, а к увлекательной новой науке, объясняющей рождение звезд. Те, кого интересуют история открытия галактик и их структуры, с удовольствием прочтут увлекательную книгу «Открытие нашей Галактики» *), а с современным развитием вихревой космогонии можно познакомиться по более трудной книге «Происхождение галактик и звезд» **). История открытия спиральной структуры галактик очень интересна сама по себе и полна неожиданных открытий, недоразумений, тупиков — всего того, с чем мы уже встретились в истории солитона. Судьба всякой глубокой идеи в науке очень непроста, и история солитона не представляет исключения, а очень наглядно показывает, на каком извилистом пути добываются крупицы научного знания. До сих пор мы были скорее зрителями, чем участниками этой нелегкой работы. Теперь попробуем исследовать несколько тропинок, проявляя некоторую самостоятельность.

*) Уитни Ч. Открытие нашей Галактики: Пер. с англ. — М.: Мир, 1975.

**) Туревич Л. Э., Чернин, А. Д. Происхождение галактик и звезд. — М.: Наука, 1983.

О линейности и нелинейности

Истинные законы не могут быть линейными...

А. Эйнштейн

Прежде чем приступить к этой работе, еще раз обдумаем, что мы уже узнали о солитонах. В самых разных средах могут существовать и распространяться локализованные (т. е. сосредоточенные в ограниченной части пространства; от лат. locus — место) возбуждения, которые похожи на своеобразные деформируемые частицы. В научной литературе обычно употребляют для этих частиц названия «уединенная волна» или «солитон», причем солитонами обычно (особенно математики) называют уединенные волны, которые сохраняют свою индивидуальность при столкновении и описываются решениями некоторых специальных уравнений, подобных КдФ-уравнению. Мы позволим себе, как это делает большинство физиков, отклоняться от этого правила и зачастую называть солитонами всякие локализованные возбуждения, похожие на частицы (термин «солитоноподобное возбуждение» звучит слишком неуклюже, и мы его будем по возможности избегать). Это не приведет к недоразумениям, если идет речь о свойствах, общих для всех солитоноподобных возбуждений, а конкретные солитоны можно называть их индивидуальными именами.

Мы познакомились с солитонами трех типов. Они были открыты примерно в одно и то же время, но судьбы их складывались по-разному, а главное, в течение целого столетия никак не скрещивались. В большой мере это связано с тем, что для их правильного понимания необходимо было освободиться от представлений о линейности соответствующих им возбуждений. Принцип сложения возбуждений позволил разработать настолько общие и эффективные методы решения многочисленных задач физики, что многие стали сознательно или бессознательно считать его одним из основных принципов математической физики *). Отсюда возникло стремление хотя бы приближенно «линеаризовать» каждую физическую задачу, т. е. свести ее к такой, для которой в первом приближении принцип сложения выполняется. К нелинейным задачам не было никакого общего подхода, а потому и не могла возникнуть общая теория солитонов, которые по своей природе нелинейны. В некоторых счастливых случаях удавалось изучить конкретные нелинейные явления, такие, как волны Герстнера, КдФ-солитоны или простые гидродинамические вихри, но общую атмосферу это изменить не могло.

*) Как мы уже говорили, «досадным» исключением оставалась лишь гидродинамика.

Почему линейность так упрощает решение задачи? Проще всего это понять на простых примерах. Рассмотрим уравнение ах + y = 0, решения которого — это пары чисел (x, у), при подстановке которых оно обращается в тождество. Ясно, что всякое решение можно записать в виде (х0, -ax0), где x0 — произвольное число. Если изобразить решения точками на плоскости, то все решения лежат на прямой ОА, проходящей через точки О = (0, 0) и А = (1, -a). Если мы знаем только одно решение А, то, пользуясь линейностью, можно получить все решения умножением на произвольное число: х0А = (х0, -aх0). Математик скажет, что совокупность всех решений этого уравнения образует линейное одномерное многообразие. Для определения всех его точек достаточно задать одну точку, отличную от О (0, 0), например, А = (1, -a). Если — две точки этого многообразия, то точка А3 = c1A1 + с2А2 = , при любых с1 и с2 тоже принадлежит этому многообразию (т. е. точка А3 тоже лежит на прямой ОА).

Точно также можно найти все решения уравнения ах + by + z = 0, т. е. тройки чисел (x, y, z), при подстановке которых уравнение обращается в тождество. Можно убедиться, что достаточно знать два решения, например, , а все остальные получаются их линейными комбинациями, т. е. . Это пример двумерного линейного многообразия. Геометрически можно изобразить его как плоскость в трехмерном пространстве (попробуйте проверить эти утверждения и нарисовать такую плоскость).

Рассмотрим теперь более близкий к физике пример колебаний грузика на пружине. Отклонение грузика от положения равновесия x(t) подчиняется уравнению Ньютона , где а(t) — ускорение грузика в момент t, ω0 — круговая частота, ω0 = 2π/Т, а Т — период колебаний грузика. Если x1(t) и x2(t) — два решения этого уравнения, описывающие какие-то два движения, то и любая их линейная комбинация — тоже решение (т. е. х3(t) — возможное движение) *). Совокупность всех решений также образует линейное многообразие.

*) Так как ускорение a(t) линейно зависит от x(t).

Рассмотрим два движения: x1(t) = cos(ω0t) и x2(t) = sin(ω0t). Взяв , можно написать произвольную линейную комбинацию из x1 и x2: . Так получается самое общее выражение для отклонений грузика при колебаниях с амплитудой хM и фазой φ. По аналогии с рассмотренными нами алгебраическими уравнениями можно сказать, что линейное многообразие возможных колебаний двумерно. Каждое колебание грузика можно представить точкой на плоскости (с1, с2), и эти точки также образуют линейное многообразие.

Над этими простыми примерами стоит как следует подумать. Важно понять, во-первых, что любое колебание грузика можно представить в виде суммы двух линейно независимых, т. е. не выражающихся друг через друга в виде линейных комбинаций колебаний x1 = cos(ω0t) и x2 = sin(ω0t) (вместо этих можно взять и другие линейно независимые решения). Наоборот, пусть известны два возможных колебания x1(t) и x2(t), отношение которых не постоянно, — такие колебания будут линейно независимыми. Тогда любое другое движение можно получить, подобрав подходящие числа с1 и с2 и складывая колебание  с1x1(t) с с2x2(t). Важно, что при этом не нужно знать даже само уравнение. Достаточно иметь два независимых колебания и знать, что выполнен принцип линейности или принцип сложения колебаний.

Если линейности нет, то все выглядит гораздо сложнее. Возьмем самое простое уравнение y2 + аx2 = 0. Сразу ясно, что многообразие решений (x, у) будет иметь совершенно разный вид при разных знаках а. При а 0 оно состоит из единственной точки О = (0, 0). При а = 0 — это точки, лежащие на оси Оx, т. е. точки (x0, 0), где x0 — любое число. Если же а 0, то все решения имеют вид или , или , т. е. лежат либо на прямой ОА, либо на прямой ОB (рис. 3.9).



Ясно, что в этом случае многообразие решений нелинейно. Например, сумма двух написанных решений с одним и тем же х0 равна (2х0, 0), а х = 2х0, у = 0 не удовлетворяет нашему уравнению при .

Так обстоит дело в самом простом случае. При усложнении уравнения уже совсем не просто выяснить, имеет ли оно решения, и если имеет, то сколько и как эти решения зависят от параметров, входящих в уравнения. В нашей простой задаче единственный параметр — это число а. При а  0 есть только нулевое решение, при а = 0 решения образуют линейное многообразие, а при а  0 многообразие решений становится нелинейным. В этом примере нелинейное многообразие устроено слишком просто, но небольшое изменение уравнения (скажем, добавка к левой части слагаемого , где число b может быть очень малым) приводит к очень серьезным, качественным изменениям структуры множества решений (убедитесь в этом!).

Вообще, такая сильная, качественная зависимость решений от параметров, появление новых решений (или их исчезновение) — самое характерное свойство нелинейных уравнений. С простыми примерами такого проявления нелинейности в движениях тел мы сталкиваемся очень часто. Когда мы пытаемся сдвинуть с места стоящий на ровном месте автомобиль, мы постепенно увеличиваем усилие, но автомобиль не двигается, пока усилие не достигнет определенного значения. После того как автомобиль начнет двигаться, его довольно легко разогнать, прилагая меньшее усилие. Этот эффект возникает из-за нелинейности силы трения — при движении автомобиля сила трения меньше, чем в покое. Нелинейность этого типа можно назвать «пороговой» нелинейностью. При достаточно малых воздействиях (ниже «порога») система находится в одном состоянии (автомобиль не движется), при достижении порога система переходит в другое состояние, в котором воздействие можно уменьшить или даже убрать (катящийся автомобиль может двигаться некоторое время по инерции).

Пороговая нелинейность ясно видна и в механизме возбуждения нервного импульса. Малые раздражения, вообще говоря, не приводят к возбуждению импульса; он пойдет лишь при достаточно сильном раздражении. Если бы не было этой нелинейности, наша жизнь стала бы совершенно невозможной. В теории солитонов более важны нелинейности других типов. С ними мы познакомимся в следующих главах.

ЧАСТЬ 2