Многоликий солитон — страница 6 из 11

НЕЛИНЕЙНЫЕ КОЛЕБАНИЯ И ВОЛНЫ

Нужно обращать острие ума на самые незначительные

и простые вещи и долго останавливаться на них, пока

не привыкнем отчетливо и ясно прозревать в них

истину.

Р. Декарт

В истории солитона много непонятного, но почему в прошлом веке не был открыт солитон, о котором пойдет речь в следующей части, объяснить просто невозможно. Цепочки из связанных маятников изучали многие ученые: проводили с ними опыты, рассчитывали волны, бегущие по ним. Однако никто не сумел увидеть возникающую в таких цепочках уединенную волну, которая сегодня считается одним из образцовых солитонов. В оправдание физиков и математиков прошлого века можно сказать, что и после того, как этот солитон был обнаружен в теоретической работе советских физиков Я. И. Френкеля и Т. А. Конторовой (1938 г.), современным ученым понадобилось почти тридцать лет для выяснения его истинной солитонной природы. К сожалению, снова и снова приходится убеждаться, что для настоящего освоения открытия нужно не менее двадцати-тридцати лет!

С солитоном Френкеля и Конторовой (ФК-солитон) стоит познакомиться поближе. Он устроен не сложнее, чем солитон Рассела или Кортевега и де Фриза (КдФ-солитон), встречается в самых разных физических системах и его легко наблюдать. ФК-солитон имеет неизменную форму, не зависящую от его скорости. Он может покоиться или двигаться, причем зависимость его энергии Е от скорости v такая же, как зависимость энергии от скорости для частицы с массой m0, которая следует из специальной теории относительности .

Отличие заключается в том, что вместо скорости света с в вакууме в этой формуле возникает v0 — скорость распространения обычных синусоидальных волн малой амплитуды в среде, по которой бежит солитон. Более того, для ФК-солитонов существуют античастицы (антисолитоны). Солитоны отталкиваются друг от друга, а солитон и антисолитон притягиваются и могут образовать связанное состояние — солитонный «атом». И все это можно увидеть на очень простой механической модели, которую совсем нетрудно сделать! Фарадею, Максвеллу, Кельвину и другим физикам прошлого века, предпочитавшим изучать сложные явления на простых моделях, этот солитон наверняка понравился бы.

Мы подойдем к нему издалека, сначала придется немного разобраться с нелинейными колебаниями и волнами. Тому, кто хочет по-настоящему понять устройство солитонов, необходимо познакомиться с нелинейными колебаниями одного маятника и понять, как распространяются волны в системе маятников, связанных друг с другом.

Глава 4 ПОРТРЕТ МАЯТНИКА

А круговое движение первее прямолинейного: оно про-

ще и более совершенно.

Аристотель

Уравнение маятника

Рассмотрим движения хорошо известного математического маятника, т. е. небольшого грузика с массой m, подвешенного на абсолютно жесткой, нерастяжимой проволочке длины l; массу проволочки будем считать пренебрежимо малой. Обычно изучают малые колебания и поэтому говорят о грузике на нитке, но мы хотим изучать любые движения и потому подвесим наш жесткий маятник на хорошо смазанной оси в точке О' так, чтобы он мог свободно вращаться, а не только качаться вблизи положения равновесия. Угол φ, измеряемый в радианах, отсчитывается от нижнего положения против часовой стрелки (рис. 4.1). Полный оборот соответствует φ = 2π, два оборота — 4π и т. д. Движению по часовой стрелке соответствует уменьшение угла φ. для полного оборота по часовой стрелке φ = -2π и т. д. Для определенности будем считать, что в момент времени t = 0 маятник отклонен на нулевой угол, φ(0) = 0. В качестве координаты грузика можно взять угол φ или же алгебраическое значение длины дуги s = φ • l.



В каждой точке А движение происходит в направлении касательной к окружности под действием тангенциальной (направленной по касательной) составляющей силы тяжести. Как ясно из рисунка, эта составляющая равна (с учетом нашего выбора положительного направления движения). Скорость движения грузика по окружности равна v = s' = lφ', где s' и φ' обозначают производные по времени t. Пользуясь тем, что малые смещения грузика направлены по касательной к окружности, точно так же определим тангенциальное (т. е. по направлению дуги окружности) ускорение а = v' == s" = lφ", где s" и φ" — вторые производные по времени. Второй закон Ньютона для движения грузика можно написать в виде ma = , или окончательно



Соотношение (4.1), выражающее угловое ускорение грузика φ" через его положение φ(t) в тот же самый момент времени, называют дифференциальным уравнением движения грузика. Решить его значит найти такую зависимость угла φ от времени t, для которой в каждый момент выполнено соотношение (4.1).

Дифференциальное уравнение описывает все возможные движения маятника. Чтобы найти какое-то конкретное движение, надо еще добавить некоторые дополнительные условия. Например, если задать положение и скорость грузика в начальный момент времени, то движение будет полностью определено. Как сказал бы математик, существует единственное решение дифференциального уравнения (4.1), удовлетворяющее начальным условиям φ(0) = φ0, φ'(0) = φ'0, (φ0 и φ'0 могут быть любыми).

Это уравнение, очевидно, нелинейно. Даже если известны какие-то два его решения φ1(t) и φ2(t), новое решение их сложением не получишь. Ясно также, что умножение решения на число с 1 не дает нового решения: вторая производная от сφ1 равна сφ"1, а . Правда, есть простой случай, когда φ1 + φ2 тоже есть решение, но, к сожалению, этот случай не интересен, так как дает просто разное описание состояния покоящегося маятника. Действительно, уравнение имеет простые решения φ =  ... Первая серия соответствует устойчивому положению равновесия маятника внизу (минимум потенциальной энергии). Грузик покоится, его скорость, ускорение и действующая на него сила равны нулю. А вторая серия — это неустойчивое положение равновесия в крайней верхней точке (максимум потенциальной энергии). Если грузик чуть-чуть отклонится от этого положения, то он придет в движение. Так как в реальном физическом мире всегда остаются какие-то малые неконтролируемые воздействия на грузик («возмущения»), долго находиться в этом состоянии он не может.

Малые колебания маятника

Чтобы подступиться к решению нелегкой задачи о движениях маятника, рассмотрим сначала малые колебания, когда угол настолько мал, что можно положить sin φ  φ. Уравнение теперь становится линейным (это и есть линеаризация!):



, и можно угадать (или вспомнить!) его решение φ = φM0t) *), которое равно нулю при t = 0. Благодаря линейности уравнения максимальное значение угла φM формально может быть произвольным числом, но мы, конечно, должны помнить, что при больших значениях φM наше приближение не годится. Поэтому число φM должно быть таким, что sin φM φM.

*) для этого достаточно вспомнить правило дифференцирования тригонометрических функций. Ниже это движение будет построено другим, геометрическим способом.

Этим решением, разумеется, не исчерпывается все множество решений. Мы заранее предположили, что φ(0) = 0, и этим отбросили, например, решение φ = cos (ω0t), которое тоже легко угадать. Пользуясь линейностью, теперь можно найти и общее решение, складывая sin (ω0t) и cos (ω0t), умноженные на произвольные амплитуды. Ясно, что этим способом получается любое колебание, так как первое решение позволяет получить любое значение скорости в начальный момент, а второе — задать любое начальное положение.

Самое общее малое колебание можно получить и другим способом, понимание которого очень полезно. Заметим, что движение  φ = φMsin(ω0t) можно наблюдать, пустив другие часы отсчитывать время в момент t0 (по старым часам). При новом отсчете времени то же самое движение будет выглядеть как φ = φMsin[ω0(t + t0)].



Нетрудно проверить, что это решение при любых t0 удовлетворяет уравнению 4.1. Отсюда следует, что если движение φ = φMsin(ω0t) возможно, то и движение φ = φMsin[ω0(t + t0)] также возможно. А это движение уже самое общее, поскольку подбором φM и t0 можно задать любые начальные значения скорости и положения.

Решение уравнения для малых колебаний можно найти совсем простым способом. Достаточно вспомнить геометрическое определение тригонометрических функций и закон движения материальной точки по окружности. Пусть точка М движется по окружности единичного радиуса с постоянной скоростью V = ω0 (рис. 4.2). Скорость V направлена по касательной, и ее проекция на ось Оу равна ω0cos α, где α = ω0t (радиан). Точка S совершает гармоническое движение, длина отрезка (OS) = sin ω0t, и ее скорость v равна проекции скорости V на ось Оу, т. е. v = ω0cos(ω0t). Полное ускорение α направлено к центру и равно  (радиус окружности равен 1). Ускорение точки S равно проекции ускорения а на ось Оу, т. е. . Таким образом, ускорение точки S равно . Если взять (OS) = φ, получим φ" = . Обозначив , находим, что φ = sin(ω0t) есть решение линейного уравнения для малых колебаний маятника. Заодно вспомним, что период колебаний Т совпадает с временем полного оборота точки М по окружности, т. е. равен .

Маятник Галилея

Эта формула, хорошо известная из школьного курса физики, была впервые найдена Гюйгенсом *). С точностью до числового множителя она, по-видимому, была известна уже Галилею. История ее открытия интересно и подробно описана в упоминавшейся в книге С. Г. Гиндикина, но с одним утверждением, сделанным в ней, можно поспорить. Там сказано (с. 39): «Галилей обнаруживает связь между длиной маятника и частотой его колебаний: квадраты периодов колебаний относятся как длины. Вивиани пишет, что Галилей получил этот результат, «руководствуясь геометрией и своей новой наукой о движении», но никто не знает, каким мог быть теоретический вывод. Быть может, все же Галилей подметил закономерность экспериментально?» Принять это предположение было бы несправедливостью по отношению к Галилею. На опыте он лишь подметил зависимость периода от длины, но закон пропорциональности периода квадратному корню из длины нашел с помощью довольно остроумных рассуждений, которые представляют не только исторический интерес.

*) Гюйгенс получил ее другим способом, основанным на открытом им свойстве изохронности колебаний циклоидального маятника, а рассуждения, приведенные выше, использовал для определения ускорения точки, движущейся по окружности (о циклоидальном маятнике см. в книге: Гиндикин С. Г. Рассказы о физиках и математиках. — 2-e изд. — М.: Наука, 1984. Библиотечка «Квант», вып. 14).

Основным для Галилея был найденный опытным путем закон равной продолжительности качаний маятников одинаковой длины, или изохронизм их колебаний (от греч. «изос» — равный, «хронос» — время). Для дальнейших рассуждений он использовал открытый им закон свободного падения и связь движения по наклонной плоскости со свободным падением. Если слегка модернизировать рассуждения Галилея, как это сделал Л. И. Мандельштам в своих замечательных «Лекциях по колебаниям», прочитанных в 1930 г., то можно даже получить формулу, похожую на формулу Гюйгенса.

Заменим движение грузика по дуге АО из состояния покоя свободным движением по хорде АО (рис. 4.3). Тогда время t, затраченное на это падение, равно времени свободного падения из О" в О. Это следует из известного Галилею факта, что ускорение движения по катету прямоугольного треугольника относится к g, как длина ОА относится к длине (OO") = 2l (сообразите, почему). Так как , то четверть периода колебаний равна , а полный период . Галилей рассуждал несколько иначе и ограничился утверждением о пропорциональности времен скатывания по хорде АО и движения маятника по дуге ОА времени свободного падения по вертикали О"О, откуда он и вывел пропорциональность этого времени квадратному корню из длины маятника.

Подлинное рассуждение Галилея легко понять из рис. 4.4. Время скатывания грузика по наклонной плоскости ОА1А2 пропорционально квадратному корню из длины ((OA1) для первого маятника и (ОА2) для второго). Эти длины ОА1 и ОА2 пропорциональны длинам маятников (O1O) = l1 и (O2O) = l2. С учетом закона свободного падения отсюда следует, что Т пропорционально  для подобных колебаний (т. е. с одинаковым максимальным углом отклонения φ).



Используя изохронность, доказываем, что это верно для любых колебаний.

Для малых колебаний рассуждения Галилея совершенно правильны. Малые колебания действительно изохронны. Как мы теперь понимаем, изохронность прямо следует из линейности. Действительно, если колебание с единичной амплитудой определяется функцией φ = sin (ω0t), то колебание с амплитудой φM, в силу линейности, можно найти простым умножением на φM. Это и значит, что период остается неизменным. Остальная часть рассуждения Галилея особенно интересна тем, что в ней содержится намек на использование соображений о подобном поведении подобных систем. В ясном виде принцип подобия впервые сформулировали Ньютон и Гук. Это настолько полезная вещь, что стоит сделать небольшое отступление.

О подобии и размерностях

Малое с великим схоже,

Хоть и разнится на вид.

В. Гёте

Принцип подобия Ньютона—Гука оставался в забвении более ста лет, пока его не возродил Фурье в упоминавшейся выше работе «Аналитическая теория теплоты». Он ввел очень важные понятия размерности физической величины и принцип однородности по размерностям. Измерение всех механических величин сводится к измерению нескольких основных, в качестве которых обычно берут длину (размерность L), время (размерность Т) и массу (размерность М). Остальные величины назовем «производными».

Так, измерение площади сводится к измерению длин. Чтобы измерить площадь прямоугольника S, мы измеряем длины его сторон и перемножаем их. Если обе стороны умножить на одно и то же число с, то площадь умножится на с2 . Это означает, что размерность площади равна квадрату размерности длины, и этот факт можно записать с помощью «формулы размерности» [S] = L2. Формула размерности для S говорит нам, что площади любых фигур умножаются на одно число с2, если все линейные размеры умножить на с (например, при фотоувеличении). Если бы мы не знали, как вычислить площадь круга радиуса R, то из формулы размерности получили бы, что S = cR2, где c — некоторое число, о котором формула размерности ничего не говорит. Измерив c для какого-нибудь круга, мы с помощью формулы размерности будем знать, как вычислить площадь любого круга.

Точно так же, исходя из определения скорости равномерного движения v = (x2 - x1)/(t2 - t1), можно написать для нее формулу размерности [v] = LT-1. Она просто означает, что при увеличении всех расстояний в cL раз и всех промежутков времени в cТ раз скорость умножится на число cL/cT. Обычно когда записываются формулы для физических величин, они всегда сопровождаются указанием на единицы измерения (S [см2], v [см • с-1] и т. д.). Это указание одновременно дает нам и размерность величины. Так как ускорение измеряется, скажем, в см • c-2, то формула размерности для ускорения есть, очевидно, [α] = LT-2.

Аналогично легко найти формулы размерности для силы [F] = MLT-2, для энергии [Е] = ML2T-2 и для других производных величин. Показатели степеней в формулах размерности называются показателями размерности. С ними можно обращаться, как с обычными показателями степени.

Например, возьмем формулу «сила = масса × ускорение». Если увеличить все линейные размеры в cL раз, промежутки времени в cT раз и массы в сM раз, то ускорение увеличится в cL/c2T раз, а сила в сMcL/c2T раз. Это мы и запишем с помощью формулы для силы. Очевидно, что ее можно получить и так: [F] = М [а] = MLT-2, т. е. с формулами размерности можно обращаться, как с обычными формулами.

Принцип однородности по размерностям требует чтобы обе части равенства, выражающего физический закон, имели одинаковые формулы размерности. Это правило хорошо известно и используется для проверки правильности полученных при вычислениях соотношений. Если мы, например, вычисляли объем какой-то сложной фигуры и получили для него выражение, измеряемое в квадратных сантиметрах (размерность L2), то нужно искать ошибку в вычислениях. Особенно интересно, однако, обратное применение этого принципа для получения самих формул.

Получим, например, закон Галилея для свободного падения тела. Пройденный за время падения t путь s может зависеть еще от массы тела m и от действующей на него силы mg. Мы можем предположить поэтому, что s = ktdmb(mg)с, где d, b, с, k — некоторые числа. Формула размерности для правой части есть TdMb+cс] = Mb+cTd-2cLс. Формула размерности для левой части [s] = L. Приравнивая показатели размерности, находим с = 1, d - 2с = 0, b + с = 0, т. е. d = 2, b = -1, так что s = kgt2 , где k — неизвестное число. Его уже нельзя определить из соображений подобия и размерности.

Найдем формулу Гюйгенса для линейных колебаний маятника. Период Т может зависеть от длины l, массы грузика m и действующей на грузик силы f, т. е. Т = dmafblc. Отсюда находим уравнение размерностей [Т] = Mα+bLb+cT-2b, т. е. а + b = 0, b + с = 0, -2b = 1. для периодов колебаний получаем формулу



При f = mg получается формула Гюйгенса, но с неизвестным множителем d.

Интересно, что этим способом мы получили более общую формулу для периода колебаний, которая годится не только для маятника в поле силы тяжести. Например, если грузик имеет электрический заряд q и помещен в однородное и постоянное электрическое поле Е между обкладками конденсатора, то на него действует сила f = mg + qE. Зная формулу Гюйгенса, мы определяем d и для маятника в электрическом поле сразу находим период колебаний 



Конечно, таким простым способом можно получить полный ответ далеко не всегда. Рассмотрим нелинейные колебания маятника в поле силы тяжести. Теперь зависимостью периода от амплитуды, как мы сделали это выше, пренебречь нельзя. Небольшое размышление показывает, что наши рассуждения остаются верными, но d нельзя считать просто числом — d оказывается функцией безразмерного выражения, зависящего от амплитуды колебания, например, от отношения длины дуги sM = lφM к длине маятника l. Таким образом, для периода произвольных колебаний получаем 



Так как при малых значениях φM должно быть d 1, то функция dM) удовлетворяет условию dM) → 1 при φM → 0.

Легко сообразить, что dM)  1. Действительно, [sin φ] [φ] и возвращающая сила для нелинейного маятника всегда меньше, чем для линейного маятника. Нелинейная сила дает меньшее ускорение грузику на всем пути, а значит, период нелинейного колебания всегда больше периода линейного колебания. Это отличие возрастает с ростом амплитуды φM. Можно доказать, что dM) возрастает с ростом φM и что период неограниченно возрастает, если φM → π.

Итак, совсем простые средства позволяют довольно много узнать о свойствах очень непростой системы. Здесь, однако, уместно сделать предостережение. То, что маятник непростой прибор, по-видимому, ясно. Недаром он послужил Галилею, Гюйгенсу и Ньютону одним из основных инструментов, с помощью которых они открыли законы механики. Хорошо послужит он и в наших попытках разобраться с нелинейными явлениями.

А вот простота принципа подобия и соображений размерностей несколько обманчива. Это довольно «сильный» принцип, но его применение требует очень хорошего понимания физической сущности явления, к изучению которого он применяется, а общих правил как достичь такого понимания — нет *). Применение принципа подобия в более сложных задачах — это в какой-то мере искусство. Потому-то так долго и не понимали это открытие Ньютона, а когда поняли, то начались бесконечные споры о его смысле, возможностях применения в тех или иных задачах и даже о его полезности. Эти споры не вполне затихли и сегодня. До сих пор современно звучат слова, сказанные 70 лет назад большим знатоком и пропагандистом анализа размерностей Рэлеем: «Меня часто удивляет, что даже весьма крупные ученые уделяют столь незначительное внимание великому принципу подобия. Нередко случается, что результаты кропотливых исследований преподносятся как новые «законы», которые на самом деле можно было бы получить в течение нескольких минут». К сожалению, мы не сможем уделить этому принципу достаточно внимания и рекомендуем читателю самостоятельно тренироваться в открытии с его помощью простых физических законов. 

*) Подумайте, почему в живой природе нет подобия. Может ли существовать в точности подобный человеку великан, все размеры которого в 10 раз больше размеров среднего человека!

В качестве упражнения найдите методом размерностей ускорение точки, движущейся равномерно по окружности, и определите период малых колебаний тяжелой невязкой жидкости (например, ртути) в U-образной трубке. Некоторые другие примеры встретятся позже, а сейчас настало время вспомнить еще более великий принцип.

Сохранение энергии

Попался на качели,

Качайся, черт с тобой!

Ф. Сологуб

Кинетическая энергия грузика, подвешенного на нити и совершающего малые колебания, равна 1/2mv2 = 1/2ml2(φ')2, а потенциальную энергию легко найти с помощью рис. 4.5.



Так как (ОА) = 2l sin(φ/2), то (ОН) = 2l sin2(φ/2), и потенциальная энергия равна 2mgl sin2 (φ/2). Полная энергия Е = 1/2ml2(φ') + 2mgl sin2(φ/2).

Удобно намного преобразовать это соотношение, сделав все его члены безразмерными:

(φ')202 + 4 sin2 (φ/2) = 2Е/mω02 l2 . (4.3)

В правой части здесь написано отношение полной энергии маятника к кинетической энергии точки с массой m, равномерно вращающейся по окружности радиуса l с периодом . Обозначим эту энергию буквой Е0, так что правая часть равна отношению Е/Е0. Если амплитуда качаний φM мала, то sin(φ/2)  φ/2, и закон сохранения энергии (4.3) имеет совсем простой вид

(φ')202 + φ2Е/Е0, Е0 = 1/2mω02 l2. (4.4)

Полную энергию удобно выразить через амплитуду φM. В крайней точке, где φ = φM, угловая скорость равна нулю. Из уравнения (4.3) поэтому следует, что

Е/Е0 = 4 sin2M/2) φM2,

где приближенное равенство, как всегда, относится к малым колебаниям.

С законом сохранения энергии связаны два новых способа наглядного графического изображения движений и других механических систем. Обычный способ — это изображение зависимости φ(t). Например, график простого гармонического колебания φ = φMsin(ω0t) позволяет наглядно представить положение грузика в разные моменты времени (рис. 4.6).



С помощью этого графика можно также найти скорость грузика в любой заданный момент. Она определяется углом наклона касательной к кривой в точке А с координатами (t, φ(t)), т. е. φ' = tg α. На графике, однако, не видно, как распределяется полная энергия при движении и как она связана с амплитудой. Для наглядного представления изменения кинетической и потенциальной энергий грузика нарисуем энергетическую диаграмму.

Нарисуем зависимость потенциальной энергии грузика U(φ) от его положения. В формуле (4.4) потенциальную энергию представляет слагаемое φ2, а кинетическую Т — слагаемое (φ')202. На графике удобнее откладывать отношения U/Е0, Т/Е0, Е/Е0.



Отложим по горизонтальной оси отрезок ОА, длина которого равна φ(t), а в направлении вертикальной оси отложим отрезок (АА2) = Е/Е0, причем (АА1) = U/Е0, (А1А2) = Т/Е0 (рис. 4.7, б). Так как полная энергия постоянна, то точка А2 при изменении t будет двигаться по прямолинейному отрезку А2М, а точка А' — по параболе (U(φ)0) = φ2. На энергетической диаграмме видно, как перераспределяется полная энергия между кинетической и потенциальной составляющими при различных значениях φ и как амплитуда связана с полной энергией. Если нарисовать над энергетической диаграммой график φ(t) (рис. 4.7, α), то можно наглядно увидеть зависимость кинетической и потенциальной энергии от времени. Когда маятник движется из нижнего положения к крайнему правому, где φ = φM, изображающая точка А2 движется направо до точки М, а затем возвращается налево. Как при этом меняются кинетическая и потенциальная энергия, видно достаточно ясно, но скорость определять не очень удобно (нужно вычислять квадратный корень из длины отрезка А1А2). Чтобы следить также и за положением и скоростью грузика, удобно представить движение еще одним способом.

Нарисуем под нашими двумя диаграммами еще одну, на которой по оси абсцисс по-прежнему будем откладывать значения φ, а по оси ординат отложим значения φ'/ω0 в тот же момент времени (рис. 4.7, в). Тогда при движении грузика точка А3 будет описывать окружность с радиусом, равным φM = . Это видно из уравнения (4.4), так как (ОА) = φ(t) и (АА3) = φ'(t)/ω0. В случае простого гармонического колебания (ОА) = φMsin(ω0t), (АА3) = φMcos(ω0t), и ясно, что точка А3 вращается по окружности равномерно.

В этом месте внимательный, но нетерпеливый читатель воскликнет: «Но ведь это же очевидно! С этого начиналось описание гармонического колебания. Более того, мы вернулись просто к определению тригонометрических функций. Всем известно, что если точка равномерно движется по окружности единичного радиуса с угловой скоростью ω0, то ее проекции на прямые, проходящие через центр, определяют тригонометрические функции. В данном случае сразу ясно, что (ОА) = φMsin(ω0t)».

Все это, конечно, верно. Но дело в том, что нарисовать зависимость скорости φ' от положения φ можно, не только не решая уравнения маятника, но даже и забыв о его существовании. Достаточно знать закон сохранения энергии и выражение для энергии через координату и скорость, а это можно сделать не только для малых качаний маятника и не только для маятника! Пользуясь диаграммой зависимости скорости от положения, можно, наоборот, приближенно найти, как меняется положение точки со временем.

Диаграмму, на которой изображена зависимость скорости от координаты при различных значениях энергии, называют фазовой диаграммой. «Фаза» здесь означает состояние частицы, определяемое ее координатой и скоростью.

По фазовой диаграмме можно приближенно найти и график движения. Читателю полезно обдумать, как это сделать.

Язык фазовых диаграмм

Математика — тоже язык!

Приписывается Дж. У. Гиббсу

Язык для всех равно чужой,

И внятный каждому...

Ф. Тютчев

Основная ценность всего этого длинного, не самого простого и не самого красивого способа решения задачи о малых колебаниях маятника состоит, конечно, в том, что этим же способом можно изучить любые колебания. При этом на новом языке «большие» (нелинейные) колебания выглядят ненамного сложнее малых. Иными словами, новый язык лучше приспособлен для решения сложных задач, и его нужно изучать. Свободное владение языком означает, что при чтении вам не нужно переводить с него на родной. Поначалу этого достичь нелегко, и приходится заниматься переводом. С течением времени, попрактиковавшись в применениях этого языка, вы вдруг замечаете, что начинаете на нем думать, и необходимость в переводе возникает все реже и реже.

Чем же отличается новый язык от обычного? Главное, разумеется, не в том, что мы изобразили движение другим способом, а в том, что мы сумели совсем по-новому подойти к проблеме. Действительно, нарисовать фазовую диаграмму можно, не решая никаких дифференциальных уравнений. Изобразив на одном и том же графике в плоскости (φ, φ'/ω0) кривые, соответствующие разным значениям энергии, легко сразу находить максимальные значения отклонения маятника и его скорости. Нетрудно также составить общее представление о характере движения с данной энергией. Чтобы понять, как движется маятник, вовсе не нужно знать его точное положение в любой момент времени, гораздо важнее знать общий характер его движений, который и дается фазовой диаграммой. К тому же любое конкретное движение можно восстановить по известной зависимости φ' от φ при данной энергии, которая называется фазовой траекторией. Нетрудно указать приближенный способ восстановления обычной траектории по фазовой траектории, но соответствующее вычисление можно сделать сколь угодно точным, затратив соответственно большее время. Для ЭВМ решение любой такой конкретной задачи вообще не проблема.

Язык фазовых диаграмм и фазовых траекторий — очень современный, и систематически применять его начали сравнительно недавно. Закон сохранения энергии применялся значительно раньше. В особенно ясной форме это сделал знаменитый немецкий математик Карл Вейерштрасс (1815—1897) *). Он рассматривал выражение для энергии (4.3) как дифференциальное уравнение для функции φ(t) и выражал его решения с помощью так называемых эллиптических функций, теории которых он, после Абеля и Якоби, придал законченный современный вид. Обобщения этой глубокой математической теории и сегодня применяются математиками и физиками для решения сложных нелинейных уравнений и играют очень важную роль в математической теории солитонов. Мы с сожалением должны пройти мимо этих прекрасных зданий, построенных математиками. Для описания их конструкций требуется слишком сложный математический язык. К счастью, основные свойства движений маятника и других не очень сложных систем можно описать на более простом и наглядном языке фазовых диаграмм и фазовых траекторий.

*) См. о нем в книге: Замечательные ученые. — М.: Наука, 1980. — Библиотечка «Квант», вып. 9, в очерке о Софье Васильевне Ковалевской, талант которой он высоко ценил.

Впервые для этих целей его применил в 1885 г. французский математик, преподаватель Политехнической школы **) в Париже Анри Леоте (1847—1916). Он в основном занимался различными проблемами механики и использовал фазовые диаграммы для изучения работы некоторых автоматических регуляторов. Леоте не пытался создать какую-либо общую математическую теорию, и его подход к фазовым диаграммам был, скорее, физическим. Он не знал, что за три года до этого были уже заложены основы более общей математической теории. В 1882 г. 28-летний французский математик Анри Пуанкаре (1854—1912) начал публиковать серию работ под названием «О кривых, определяемых дифференциальными уравнениями», в которых он разработал качественный и геометрический подход к изучению решений дифференциальных уравнений.



Этот подход радикально отличался от принятых в то время представлений о том, что значит решить дифференциальное уравнение. Сам Пуанкаре это очень ясно понимал: «Итак, необходимо изучать функции, определенные дифференциальными уравнениями, сами по себе, не пытаясь сводить их к более простым функциям. Полное изучение функций состоит из двух частей: 1) качественной (так сказать), или геометрического изучения кривой, определенной функцией; 2) количественной, или вычисления значений функций... Так же для изучения алгебраической кривой начинают с того, что строят эту кривую, как говорят в курсах элементарной математики, т. е. находят, какие ветви кривой замкнуты, какие бесконечны и т. д. После этого качественного изучения кривой можно найти некоторое число отдельных точек.

**) Самое знаменитое высшее учебное заведение Франции того времени. В Политехнической школе учились Ампер, Араго, Френель, Пуассон, Коши и другие известные ученые, в том числе Леоте и Пуанкаре.

Естественно, что именно с качественной стороны должна начинаться теория всякой функции, и вот почему в первую очередь возникает следующая задача: построить кривые, определяемые дифференциальным уравнением. Это качественное изучение; когда оно будет проделано полностью, то принесет самую большую пользу численному анализу функций... Впрочем, это качественное изучение и само по себе будет иметь первостепенный интерес. Различные и чрезвычайно важные вопросы анализа и механики могут быть сведены к нему».

В наше время такие взгляды кажутся совершенно естественными, почти сами собой разумеющимися. Однако сто лет назад эти идеи выглядели слишком необычными и не могли быть сразу усвоены и признаны. Мешало этому усвоению также и сильное отклонение интуитивных, геометрических рассуждений Пуанкаре от принятых тогда канонов математической строгости доказательств — многие утверждения не были доказаны, а некоторые, как выяснилось впоследствии, оказались ошибочными. Тем не менее по мере того, как росла слава Пуанкаре, которого по праву считают величайшим французским математиком второй половины прошлого века *), его труды и идеи привлекали все большее внимание. Лет через двадцать-тридцать (!) начали появляться исследования, в которых качественная теория Пуанкаре получила развитие и строгое обоснование. Развитие этой теории продолжается и в наше время, и в любой книге, посвященной нелинейным дифференциальным уравнениям или нелинейным колебаниям, можно найти многократное упоминание его имени и ссылки на его работы.

*) Подобно Эйлеру и Гауссу он охватывал своими работами почти все основные направления в современной ему математике и физике. Будучи профессором Сорбонны, с 1881 г. до своей преждевременной смерти он каждый год читал лекции по новому предмету!

Иной была судьба Леоте. Связь его исследования с идеями Пуанкаре не была замечена ни самим Леоте, ни Пуанкаре, ни кем-либо другим, а статья Леоте была полностью забыта. Другие его труды по теории машин и механизмов, по различным приложениям математического анализа были высоко оценены, и он стал с 1890 г. членом Парижской академии наук. Но эта работа пребывала в забвении, пока о ней не вспомнил замечательный советский физик Александр Александрович Андронов (1901—1952). Он был учеником Леонида Исааковича Мандельштама (1879—1944) и под его влиянием занялся проблемами нелинейных колебаний. Еще будучи аспирантом Мандельштама, он «открыл» для себя труды Пуанкаре и сразу понял, что разработанный в них математический язык наиболее подходит для решения увлекших его проблем. Мандельштам эту идею чрезвычайно одобрил и поддержал, и в результате выросло целое направление, в дальнейшем детально разработанное уже Андроновым и его учениками (в особенности надо упомянуть А. А. Витта) и обогатившее не только физику и технику, но и саму качественную теорию дифференциальных уравнений. Как говорил Пуанкаре: «Физика не может обойтись без математики, которая представляет ей единственный язык, на котором она может говорить.



Отсюда взаимные и беспрестанные услуги, которые оказывают друг другу чистый анализ и физика. Замечательная вещь — работы аналитиков — были тем более плодотворны для физиков, чем более культивировались исключительно ради своей красоты. Взамен физика, ставя новые задачи, была столь же полезна математикам, как модель для художника».

Хотя эти слова замечательно точно и ясно описывают связь математики с физикой вообще и теории колебаний с теорией дифференциальных уравнений в частности, все-таки сразу видно, что они сказаны математиком. Физик никогда не согласится даже сравнить свою науку с моделью для математики, наоборот, он будет говорить о математических моделях тех или иных сложных физических явлений. Наиболее важная часть работы физика — найти подходящую математическую модель, описывающую наиболее важные черты исследованного физического явления. Следующий этап — изучение модели — по характеру более близок к работе «чистого» математика. Но и здесь физик остается физиком. Пути решения математических задач ему часто подсказывает физическая интуиция, а постановка этих задач просто «диктуется» физикой. Не математическая красота, а желание как можно точнее и глубже понять реальные физические явления определяет для физики и само представление о том, что значит решить математическую задачу. Так что афоризм Пуанкаре — это «правда, только правда, ничего кроме правды», но не «вся правда».

Чтобы не забывать об этом, приведем слова Л. И. Мандельштама о связи физики с математикой в теории колебаний: «Конечно, поскольку вы имеете дело с уравнениями, главным образом дифференциальными, то с некоторой точки зрения все это — математика. Но не в этом главное. Прежде всего потому, что именно физика учит нас, как допрашивать дифференциальные уравнения. В теории колебаний математический образ... имеет чрезвычайно наглядное, не только геометрическое, но и физическое содержание. Иначе говоря, в подкрепление к анализу вы здесь имеете не только геометрическую, но и физическую интуицию. Причем эта наглядность и интуиция может быть весьма разветвленной и богатой и может опираться на радиотехнический, электротехнический, оптический и тому подобный материал».

До сих пор мы говорили в основном о качественных методах изучения нелинейных колебаний. Однако качественное исследование решает половину задачи, да к тому же оно и не всегда возможно. Для физики, астрономии, механики этого мало — необходимо уметь рассчитывать движения системы, производить вычисления. Сегодня в этом очень помогают ЭВМ, но даже и они далеко не всегда могут справиться со сложными задачами, возникающими при изучении реальных систем.

Методы расчета движений сложных систем начали разрабатываться в XVIII в. и предназначались главным образом для вычисления планетных орбит. Если пренебречь притяжением планет друг к другу, а учитывать лишь их притяжение к Солнцу, то задача решается легко. Однако если попытаться рассчитать, скажем, движение Луны, то сразу обнаружится, что сделать это чрезвычайно трудно — нужно учитывать силы, действующие между тремя телами — Солнцем, Землей и Луной.

Первыми начали решать подобные задачи Д'Аламбер и Эйлер, которые и предложили идею так называемого метода возмущений. Она заключалась в том, чтобы выделить самые сильные взаимодействия, определяющие главные особенности движения, а остальными, малыми взаимодействиями (их называют возмущениями) сначала пренебречь. Если движения такой упрощенной системы («невозмущенные» движения ) удается рассчитать, то затем можно вычислить поправки, т. е. найти «возмущенное» движение.

Идеи Д'Аламбера и Эйлера подробно разработали Лагранж, Лаплас и Пуассон. В частности, Пуассон заметил, что этой идеей можно воспользоваться для расчета малых колебаний нелинейного маятника. При этом невозмущенными считаются колебания линейного маятника (sin φ заменяется на φ), а возмущение определяется нелинейными поправками к возвращающей силе. Метод Пуассона позволил получить хорошее приближение, если возмущение достаточно мало, а интервал времени, на котором нам нужно знать движение, не слишком велик (первая успешная попытка получить приближенные решения на сколь угодно большом интервале времени принадлежит Остроградскому).

Примерно по такой же схеме велись вычисления в небесной механике (невозмущенное движение — это движение по кеплеровым эллиптическим орбитам). Лагранж и особенно Лаплас выполнили большие и трудоемкие вычисления возмущенных движений планет, на основании которых можно было определить точные положения планет в далеком прошлом и будущем. Применяя их методы, Адамс и Леверье впоследствии обнаружили отклонение орбиты Урана от рассчитанных значений и объяснили это явление возмущающим влиянием новой, неизвестной планеты Нептун.



В дальнейшем А. Пуанкаре и замечательный русский математик Александр Михайлович Ляпунов (1857—1918) чрезвычайно усовершенствовали и обобщили методы возмущений. Хотя они в основном интересовались задачами небесной механики, созданные ими методы оказались столь общими, что их легко было приспособить к решению совсем других нелинейных задач физики и техники. Когда примерно 50 лет назад Мандельштам и Андронов начали применять методы Ляпунова и Пуанкаре в нелинейной радиофизике, они были немало поражены тем, сколь эффективны методы небесной механики при расчете, например, работы лампового генератора. С тех пор область применения этих методов постоянно расширялась.

Примерно в то же время Николай Митрофанович Крылов (1879—1955) и Николай Николаевич Боголюбов разработали новые методы теории возмущений в нелинейной механике, позволяющие описывать не только периодические, но и гораздо более сложные движения нелинейных систем. Эти методы были применены Н. Н. Боголюбовым к описанию хаотических движений в системах, состоящих из очень большого числа частиц. В последние годы, в особенности под влиянием идей А. Н. Колмогорова и В. И. Арнольда, началось объединение качественных и количественных методов исследования нелинейных систем. Все это привело к замечательному расцвету нелинейной механики, которая теперь с успехом применяется в самых разных науках и сыграла огромную роль в развитии теории солитонов.

Продолжим разбор движений маятника, следуя по пути, подсказываемому физической и отчасти геометрической интуицией. Ясно, что фазовые траектории можно нарисовать для движения маятников с любой энергией. Совокупность всех возможных фазовых траекторий составляет фазовый портрет. По этому портрету легко получить наглядное представление о всевозможных движениях.

Фазовый портрет

Чтобы научиться рисовать и без труда понимать фазовые портреты, рассмотрим сначала совсем простые задачи. Пусть точка равномерно движется по прямой и в начальный момент t = 0 ее координата s равна нулю, так что s = v0t. График этого движения — прямая линия с наклоном, пропорциональным скорости (рис. 4.8, α).



Если на вертикальной оси графика 1 см соответствует 1 с времени, а 1 см по горизонтали соответствует 1 см пути, то скорость, очевидно, равна tg α см/с. Дальше мы не будем упоминать об этом соглашении и с производными величинами будем обращаться точно так же (на оси скорости 1 см соответствует скорость 1 см/с и т. д.). Отрицательным значениям угла отвечают движения в отрицательном направлении по оси Os (рис. 4.8, б).

Нетрудно нарисовать любую фазовую траекторию. Это просто прямые, параллельные горизонтальной оси Os и пересекающие вертикальную ось в точке, соответствующей значению скорости, равному v0. Когда скорость положительна, изображающая точка А пробегает фазовую траекторию слева направо, при отрицательной скорости — в обратном направлении. Если s = s0 + v0t, то график движения не проходит через точку О, но фазовая траектория такого движения совпадает с фазовой траекторией движения s = v0t. Это, конечно, легко проверить, но на самом деле это должно быть очевидным, так как фазовые траектории не зависят от момента t0, в котором мы начинаем отсчет времени.

Если точка покоится, то на графике движения ей соответствует прямая, параллельная оси времени, т. е. s = s0 и α = 0. На фазовой диаграмме этой прямой соответствует точка s = s0 на оси Os, т. е. точка (s, v) = (s0, 0). При разных значениях s0 эти точки заполняют всю ось Os. Каждую точку оси Os нужно рассматривать как отдельную фазовую траекторию.

Таким образом, фазовые траектории точки, движущейся равномерно по прямой, — это прямые, параллельные оси Os, а также точки оси Os. Через каждую точку фазовой плоскости (s, v) проходит только одна фазовая траектория, если договориться, что выбор начала отсчета времени t0 несуществен (т. е. важно лишь, какую кривую пробегает изображающая точка). Чтобы больше не возвращаться к этому, можно, как это делалось и раньше, условиться, что s = 0 при t = 0, а остальные движения получать сдвигом начала отсчета времени.

В качестве упражнения постройте фазовые диаграммы равномерно ускоренных движений грузика, падающего с высоты h или подбрасываемого вверх. Точка О на фазовой диаграмме представляет фазовую траекторию лежащего на земле грузика. Вообще, такие точки на фазовых диаграммах называются точками покоя. В самом нижнем положении наш грузик покоится устойчиво, иными словами, точка на фазовой диаграмме — устойчивая точка покоя. Если грузик слегка подбросить, он вернется назад. Дальнейшее движение грузика зависит от его устройства как реальной физической системы. Если грузик — модель упругого мячика, падающего на асфальт, то он будет отскакивать, пока вся его энергия не перейдет в тепло (попробуйте нарисовать фазовые траектории этих движений). Если же уронить на пол кусочек пластилина, то он останется в нижнем положении (какова фазовая траектория в этом случае?).

Точки покоя на фазовом портрете равномерно движущегося грузика, наоборот, неустойчивы. Если сообщить грузику небольшой импульс, то он начнет равномерно двигаться и в конце концов уйдет сколь угодно далеко от исходного положения. На фазовом портрете это будет выглядеть так, что точка (s0, 0) «перепрыгнет» на близкую фазовую траекторию и уйдет по ней сколь угодно далеко. В реальной системе (скажем, шайба на льду) этому помешает трение, но при очень малом трении шайба все равно улетит далеко, а при достаточном заметном трении нужно уже рисовать другой фазовый портрет, так как фазовые траектории не будут прямыми, параллельными оси Os (подумайте, как они могут выглядеть).

Фазовый портрет маятника

Как вообще в природе ни одно существо не походит

на другое, так и закон колебаний одного колеблюще-

гося тела не походит вполне на закон колебаний

другого...

Л. Больцман

Набросав все эскизы, попробуем теперь нарисовать портрет маятника. Чтобы облегчить эту задачу, изобразим сначала его движения на энергетической диаграмме (рис. 4.9). Вспомним, что связь между угловой скоростью φ' и углом отклонения φ определяется выражением для энергии (4.3), которое перепишем еще раз:

(φ')202 + 4 sin2 φ/2 = Е/E0, E0 = 1/2mω02 l2.

Если энергия равна нулю, то маятник покоится; график его движения — ось Ot, изображающая точка на энергетической диаграмме и на фазовой диаграмме — точка O.

Если Е/E0 4, то существует максимальное значение угла отклонения φM π. Так как должно выполняться неравенство Е/E0 - 4 sin2 φ/2  0, то угол φ не может достигать значения π. Мы знаем, что при этом маятник колеблется между значениями угла отклонения -φM и +φM. Движение это периодическое, хотя оно уже не описывается простой синусоидой и формула Гюйгенса не применима. (Вместо нее следует использовать более сложную формулу (4.2).) Графику этого движения (кривая 1 на рис. 4.9) соответствует на энергетической диаграмме движение по кривой 1 до крайней точки A1, где кинетическая энергия и скорость равны нулю, а затем в обратном направлении до A'1, где точка «отражается» и снова движется в положительном направлении. Как и в случае гармонического движения, на фазовой диаграмме изображающая точка движется по замкнутой кривой «овальной» формы. Ее легко построить с помощью уравнения (4.3), выразив φ' через φ. Если амплитуда φM мала, то этот «овал» превращается в окружность, соответствующую синусоиде на графике движения.

При достаточно большой энергии, когда Е/E0 4, и даже при максимальном значении потенциальной энергии 4 sin2 (φ/2) (при φ = π потенциальная энергия равна 4) кинетическая энергия (φ')202 не равна нулю, и маятник проскакивает верхнюю точку. Теперь он совершает не колебательное, а вращательное движение.



Это движение не равномерно, внизу скорость маятника максимальна, а в верхнем положении минимальна. На наших графиках это движение изображается кривыми 3. Если маятник вращается против часовой стрелки, значение угла φ неограниченно возрастает с ростом времени (фазовая траектория 3). Если он вращается по часовой стрелке, то значение угла неограниченно уменьшается (фазовая траектория 3).

Наиболее интересно для нас движение с энергией Е, в точности равной 4Е0. В этом случае закон сохранения энергии дает простое соотношение



Если маятник находится в верхнем положении, т. е. φ = π или φ = -π, то его скорость равна нулю, и он может пребывать в состоянии покоя. График такого движения: φ(t) = π при всех t, или φ(t) = -π при всех t. На фазовой плоскости точки φ = π, φ' = 0 и φ = -π, φ' = 0 — это точки покоя (или точки равновесия). Ясно, что эти точки равновесия, в отличие от нижней точки равновесия маятника, неустойчивы. Если чуть-чуть увеличить полную энергию, скажем, резким движением слегка толкнуть маятник, то он начнет совершать вращательное движение. Если уменьшить полную энергию, скажем, медленно сдвинуть и отпустить маятник, то он начнет совершать колебательные движения с амплитудой, близкой к π. В обоих случаях он далеко уходит от положения равновесия. Если бы мы проделали то же самое в нижнем положении равновесия, то ясно, что маятник начал бы колебаться около этого положения с небольшой амплитудой. Точка φ = 0, φ' = 0 на фазовой плоскости — устойчивая точка покоя.

При Е = 4Е0возможно и другое движение маятника. Пусть при t = 0 угловая скорость φ' равна 2ω0. Тогда из формулы (4.3) следует, что Е/E0 = 4, и маятник движется к верхней точке так, что его скорость в положении φ равна

 φ' = 2ω0cos φ/2 . (4.6) 

Чем ближе φ к π, тем меньше скорость. Если угол отклонения очень близок к π, то удобно обозначить малый угол отклонения π - φ через 2α. Тогда cos (φ/2) = cos (π/2 - α) = sin α  α. Скорость изменения угла φ равна, очевидно, -2α'. Поэтому между α' и α при малом значении угла α есть простое соотношение

α'  -ω0α, (4.7)

которое следует из (4.6) при малом значении π - φ.

В уравнении (4.7) можно узнать уравнение, описывающее радиоактивный распад, если считать α(t) массой нераспавшегося к моменту времени t радиоактивного вещества. Решение уравнения радиоактивного распада хорошо известно:

α(t) = α0е-ω0t.

Здесь α0 — начальное количество вещества, α(0) = α0, основание натуральных логарифмов е = 2,718281828... В Приложении показано, как получить это решение чисто геометрически. Здесь нам важно лишь то, что оно при возрастании t быстро убывает, но никогда не обращается в нуль. Это означает, что маятник ни за какое конечное время не придет в верхнее положение равновесия. Для понимания качественного характера движения нам больше ничего и не нужно. Можно сразу нарисовать приблизительный вид графика движения с энергией Е= 4Е0. Правда, наши рассуждения относились лишь к положительным значениям времени t, но левую часть кривой легко построить, вспомнив, что маятник качается совершенно симметрично относительно нижнего положения (для сравнения тонкой кривой изображено колебательное движение с энергией, меньшей  4Е0). Эта симметрия приводит к тому, что энергетическая и фазовая диаграммы симметричны относительно вертикальной оси. Если в какой-то момент t маятник находится в положении φ(t), то в момент -t он находился в положении φ(-t) = -φ(t) (напомним, что время отсчитывается так, что в момент t = 0 маятник находится в нижнем положении, см. рис. 4.10).



Фазовая диаграмма симметрична и относительно горизонтальной оси. Это значит, что всякому качанию слева направо, когда φ возрастает, соответствует точно такое же качание справа налево. График такого движения изображается кривой, симметричной относительно вертикальной оси (эти кривые изображены на рис. 4.10 штриховой линией).

Итак, мы нарисовали полный фазовый портрет маятника (рис. 4.9). Важную роль играют на нем кривые 2 и которые отделяют фазовые траектории колебательных движений (кривая 1) от фазовых траекторий вращательных движений (кривые 3, 3) и называются сепаратрисами (от лат. seрaro — отделять). Эти кривые и соответствующие им графики движения играют, как мы скоро увидим, большую роль в теории солитонов. Форма солитона Френкеля и Конторовой (как и многих других солитонов) определяется кривой, совпадающей с графиком движения, соответствующим сепаратрисе.

«Солитонное» решение уравнения маятника

Общие решения нелинейного уравнения маятника можно выразить через так называемые эллиптические функции Якоби (мы их уже упоминали, когда говорили о форме нелинейных волн, (рис. 2.2).



Замечательно, однако, что движение, соответствующее сепаратрисе фазовой диаграммы, можно записать с помощью элементарных функций. Геометрический вывод этого решения приведен в Приложении, где показано, что для решения φ(t), обращающегося в нуль при t = 0, выполнено простое соотношение



Общее решение уравнения (4.6) можно получить отсюда сдвигом начала отсчета времени, т. е. заменой в формуле (4.8) t на t0. Чтобы хорошо понять это решение, выразим φ непосредственно через t:



График этой функции легко построить, вспомнив, как выглядят графики показательной функции и aгctg (рис. 4.11, 4.12). Когда t растет от - до +, α убывает от + до 0.

При этом aгctg α пробегает значения от π/2 до 0, а φ меняется от -π до +π. Таким образом, написанное решение соответствует сепаратрисе, идущей из точки -π в точку +π.



Вспоминая, что φ удовлетворяет уравнению (4.6), после несложных тригонометрических преобразований можно найти, что



Здесь мы ввели в употребление так называемый гиперболический косинус

ch(ω0t) = 1/2(eω0t + е0t),

часто встречающийся в теории солитонов. (Геометрическое определение этой и других гиперболических функций можно найти в Приложении.) Легко построить график этой функции (рис. 4.13).

Теперь легко получить графики φ(t) и φ'(t), описывающие особое движение маятника (рис. 4.14). Эти две замечательные и простые функции стоит как следует изучить и запомнить.

Движения маятника и «ручной» солитон

Качественный характер изученных нами движений маятника полезно изучить на простых опытах. Проще всего сделать это с помощью обычного велосипедного колеса. Перевернув велосипед, можно сделать из переднего колеса неплохой маятник, способный совершать колебательные и вращательные движения. Для этого прикрепим на ободе кусочек пластилина или какой-либо иной грузик. Если колесо не сбалансировано, лучше его сначала сбалансировать, так чтобы оно могло покоиться в любом положении. Внешняя сила, действующая на колесо, определяется только дополнительным грузиком, а в движении участвует вся его масса.

Чтобы оценить период движения колеса, приближенно заменим его однородным тонким обручем с радиусом, примерно равным расстоянию l от центра до внутренней части обода, и с массой, примерно равной массе всего колеса М. Приложенная сила равна -mg sin φ, а ее момент равен mgl sin φ, где m — масса дополнительного грузика, а φ — угол отклонения его от вертикали, отсчитываемый точно так же, как и для обычного маятника. Мысленно разделим обруч на n одинаковых маленьких частей. Если к каждой приложить силу -(1/n) mg sin φ, направленную по касательной к обручу, то приложенный полный момент силы равен -mgl sin φ, так что такое «разделение» внешней силы допустимо. Для каждой маленькой части легко написать уравнение движения



поскольку все части движутся как целое и их ускорения одинаковы. Таким образом, мы получили уравнение, совпадающее с уравнением движения обычного маятника φ" = -ω02 sin φ, но теперь ω0= mg/Ml. Этот вывод не зависит от сделанных приближений, приближенным получилось лишь выражение для ω02 (в точной формуле вместо Ml надо подставить I/l, где I — момент инерции колеса; для обруча I = Ml2).

На этом простом приборе можно изучить все движения, которые были рассмотрены выше. Нужно только помнить, что трение приводит к затуханию колебаний, закон сохранения энергии становится приближенным и фазовый портрет маятника при наличии трения существенно изменяется (попробуйте показать, что для линейного маятника с трением окружности на фазовой плоскости переходят в спирали, накручивающиеся на точку φ = 0, φ' = 0).

На велосипедном колесе легко установить изохронность малых и неизохронность больших колебаний. Нетрудно также найти зависимость периода колебаний от амплитуды и установить качественный характер любых движений.

Однако построить экспериментальные графики движений не очень просто. Самый удобный способ — сделать киносъемку движений колеса, но это уже достаточно дорогостоящий опыт. Замечательно, что зависимость угла от времени для самых разных движений можно определить на опыте с помощью очень простой системы, которая, на первый взгляд, не имеет ничего общего с маятником.

Возьмем тонкую и достаточно длинную стальную проволочку. Она должна легко гнуться без заметной остаточной деформации. Если ее положить на стол и слегка сжать на концах, она примет форму полусинусоиды, как указано в верхней части рис. 4.15.



Проведем касательные к получившейся кривой и будем отсчитывать угол φ, как указано на рисунке. Длину дуги s на кривой будем отсчитывать от точки О, причем слева s 0, а справа s 0. Если на проволочке сделать петельку, как указано в нижней части рис. 4.15, то угол будет принимать значения от -π до +π, если считать проволочку бесконечно длинной. При этом зависимость φ от s описывается формулой (4.9), в которой вместо t надо подставить s, а ω0 определяется силой F, действующей на проволочку. Если проволочка бесконечно длинная, то петелька может располагаться в любом месте, она может свободно перемещаться вдоль проволочки. Эта петелька и есть простейшая модель солитона. Назовем этот солитон «ручным».

С движением маятника связаны любые формы изгиба проволочки. Каждой зависимости φ(s) от s можно поставить в соответствие некоторое движение маятника. Эта замечательная аналогия называется аналогией Кирхгофа в честь открывшего ее знаменитого немецкого физика Густава Кирхгофа (1824—1887) *). На самом деле он нашел гораздо более широкую аналогию между состояниями деформированных упругих тел и движениями твердого тела. К сожалению, о ней сегодня совершенно незаслуженно забыли. Мы немного поговорим о ней после того, как познакомимся с солитоном Френкеля.

*) Формы изгиба упругой проволочки первым изучил Леонард Эйлер. Их называют «эластиками Эйлера».

Заключительные замечания

Метод необходим для отыскания истины.

Р. Декарт

Мы заканчиваем самую трудную главу в этой книге, главное содержание которой — основные идеи теории нелинейных колебаний, изложенные на простейших, но не тривиальных примерах. Читателю, желающему понять, как устроены солитоны, необходимо ясно представить себе линейные и нелинейные колебания маятника. Особенно хорошо нужно понять энергетические соотношения и движения, фазовые траектории которых сепаратрисы (формулы (4.9), (4.10) и рис. 4.14). Эти решения позволят нам понять с помощью простых аналогий очень важные солитоны. Один из примеров — ручной солитон, который связан с асимптотическим движением маятника аналогией Кирхгофа. 

И я больше всего дорожу аналогиями,

моими самыми верными учителями.

И. Кеплер

Метод физических аналогий и моделей, которым с таким успехом пользовались великие физики прошлого века, и сегодня сохраняет ценность. Особенно плодотворен он в теории колебаний, волн и солитонов, где одни и те же уравнения описывают множество совершенно различных систем. Можно высказать некоторые общие принципы получения таких аналогий. Пусть состояния двух систем определяются одинаковым числом переменных, или, как говорят, обобщенных координат (например, угол φ для маятника, заряд конденсатора Q в колебательном контуре и т. д.). Предположим, что энергии этих систем Е1 и Е2 сохраняются и что посредством некоторого переобозначения обобщенных координат и параметров, характеризующих системы (массы, емкости, индуктивности и т. д.), можно сделать величины Е1 и Е2 одинаковыми функциями координат (с точностью до постоянного множителя). Тогда ясно, что системы полностью аналогичны и между их «движениями», каков бы ни был их смысл, можно установить полное соответствие.

Правда, здесь есть некоторые тонкости. Например, новые обобщенные координаты, от которых энергии зависят одинаково, могут изменяться в разных пределах. Более существенная тонкость связана с тем, что для систем разной природы нас могут интересовать разные задачи. Если между системами имеется точная аналогия, то их обобщенные координаты удовлетворяют одинаковым уравнениям движения. (Собственно, это и есть определение точной аналогии, просто иногда удобнее иметь дело с энергией.) Однако мы знаем, что для определения конкретного движения нужно задать некоторые дополнительные условия, например, начальные значения координат и скоростей.

Рассмотрим с этой точки зрения аналогию Кирхгофа. Выше упоминалось о точном соответствии между движением маятника и формой изгиба упругой проволочки (эластика Эйлера). В следующей главе будет показано, что для определения эластики Эйлера нужно решить уравнение маятника φ" = -ω02 sin φ. Однако в этом случае задача ставится совсем не так, как в теории маятника. Аналог времени здесь — длина дуги эластики s, а длина проволочки l фиксирована, так что -1/2ls 1/2l. Нам нужно найти форму проволочки, т. е. φ(s) при заданной внешней силе F. Как мы увидим ниже, величина ω02 пропорциональна F. Если пользоваться аналогией с маятником, то нужно решить довольно странную задачу: найти все возможные движения маятника от «момента» -1/2l до «момента» +1/2l и изучить зависимость этих движений от ω02. Для эластики естественно возникают и другие задачи, например, как найти ее наиболее устойчивую форму, т. е. форму, для которой запасенная в проволочке упругая энергия минимальна. Эти задачи существенно сложнее задач, обычно решаемых в теории маятника, и знакомство с аналогичными, но более просто определяемыми движениями маятника очень помогает при их решении.

Полезны не только точные, но и приближенные аналогии. Типичный пример приближенной аналогии — соотношение между обычным и циклоидальным маятником. Приближенной аналогией следует пользоваться с большей осторожностью, чем точной. Например, при достаточно больших амплитудах колебания обычного и циклоидального маятника становятся качественно различными. Более удачна качественная аналогия между маятником и грузиком на кривой у = α [1 - cos (х/Ь)] в поле силы тяжести, направленной по оси у (грузик в желобе). Введя обозначение φ = х/Ь, можно проверить, что малые колебания грузика вблизи точки φ = 0 соответствуют малым колебаниям маятника с длиной l = b2 и что для этих двух систем фазовые портреты качественно сходны. На математическом языке можно сказать, что они топологически эквивалентны *). Простой пример такой эквивалентности — изображение нашего лица в кривом зеркале «комнаты смеха».

*) Топологически эквивалентные фазовые портреты легко получить, нарисовав какой-нибудь фазовый портрет на резиновой пленке. Любой портрет, который получается растягиванием пленки без разрывов, топологически эквивалентен исходному. При этом замкнутые кривые остаются замкнутыми, непересекающиеся кривые остаются непересекающимися и т. д.

Топологическую эквивалентность фазовых портретов можно было бы положить в основу определения качественной эквивалентности. Однако с этим связана еще одна тонкость. Все изучаемые в физике модели реальных систем описывают их реальное поведение лишь с какой-то степенью точности. Любая математическая модель физического явления получается упрощением, или идеализацией, реальной системы. Чем сложнее система, тем серьезнее эти упрощения.

Как говорил Я. И. Френкель, «физик-теоретик... подобен художнику-карикатуристу, который должен воспроизвести оригинал не во всех деталях, подобно фотографическому аппарату, но упростить и схематизировать его таким образом, чтобы выявить и подчеркнуть наиболее характерные черты. Фотографической точности можно — и следует — требовать лишь от теоретического описания простейших систем. Хорошая теория сложных систем должна представлять лишь хорошую «карикатуру» на эти системы, утрирующую те свойства их, которые являются наиболее типическими, и умышленно игнорирующую все остальные — несущественные свойства... Хорошая карикатура на какого-либо человека не может существенно улучшиться от более аккуратного и точного изображения нехарактерных деталей его лица и фигуры» *). Так вот, основная тонкость состоит как раз в том, чтобы выделить эти наиболее характерные черты.

*) Чтобы вполне оценить это высказывание, надо знать, что Я. И. Френкель с детства и до конца жизни помимо физики увлекался живописью. Выполненные им портреты друзей и знакомых обычно передают наиболее существенные черты оригинала, хотя и не являются карикатурами. Может быть, лучше вспомнить не о карикатурах, а о рисунках Пушкина или Пикассо, которые несколькими штрихами удивительно точно передают внутреннюю сущность изображаемого человека.

Когда мы хорошо понимаем вопрос, нужно освободить

его от всех излишних представлений, свести его к про-

стейшим элементам.

Р. Декарт

Без отбрасывания несущественных подробностей вообще нельзя было бы найти физические законы. Первым это понял Галилей, который и считается основателем современного научного метода в физике. Яркий пример силы метода «окарикатуривания» явления — открытие Галилеем закона инерции, который обычно называют первым законом Ньютона (сам Ньютон приписывал первые два «закона Ньютона» Галилею). Первая часть закона инерции Галилея была известна уже великому философу древности Аристотелю из Стагира (384—322 гг. до н. э.): «ни одно тело не переходит из состояния покоя в состояние движения без действия какой-либо силы». Представить себе, что равномерное и прямолинейное движение может происходить без действия какой-либо силы (в этом смысле состояние покоя эквивалентно состоянию равномерного прямолинейного движения), ни Аристотель, ни его последователи не могли. Увидеть это на опыте нельзя, как невозможно и доказать логическими рассуждениями. Поэтому открытие Галилеем закона инерции и связанного с ним принципа относительности — одно из величайших достижений человеческого интеллекта и воображения, а работу, которая привела к этому открытию, справедливо сравнить не с работой карикатуриста, но с творческим порывом поэта: «сотри случайные черты — и ты увидишь: мир прекрасен» (А. Блок).

Приближенное представление об идеальном движении дает скольжение конькобежца по льду (автору, правда, неизвестно, знал ли Галилей, что такое коньки). Можно представить себе, что действие силы тяжести уравновешивается реакцией со стороны льда (видимо, у Галилея было об этом некоторое представление). Чтобы получить теперь картину идеального состояния равномерного и прямолинейного движения, необходимо еще мысленно исключить силы трения. Галилей сумел сделать этот последний шаг, хотя он и не изучал силы трения на опыте.

Ясное понятие о сопротивлении среды, о силах трения впервые появилось в «Началах» Ньютона, который наблюдал качания маятника в сопротивляющейся среде. Он рассмотрел влияние силы трения, пропорциональной скорости тела, квадрату скорости тела, а также постоянную силу трения. В шестом разделе второй книги «Начал» Ньютон доказывает несколько теорем о качаниях маятника в сопротивляющейся среде. Замечательна своей простотой и очень важна теорема 21: «Качания маятников по циклоиде в среде, оказывающей сопротивление, пропорциональное скорости, изохронны» (попробуйте доказать эту теорему).

С помощью полученных теорем Ньютон попытался на опыте определить зависимость силы сопротивления от скорости: «Я подвесил к прочному крюку на тонкой нити деревянный шар, вес коего был 57 7/22 римский унций *) и диаметр 6 7/8 английских дюйма, так что расстояние между крюком и центром качания шара было 10½ фута: на нити я отметил точку на расстоянии в 10 футов 1 дюйм от центра подвеса, и против этой точки я установил линейку, разделенную на дюймы, по которой я и замечал длины дуг, описываемых маятником. Затем я сосчитал число размахов, после которого маятник утрачивал восьмую часть величины своего размаха...». Сравнивая результаты наблюдений с доказанными теоремами, Ньютон пришел к выводу, что «сопротивление шара, когда он движется быстрее, пропорционально квадрату скорости, когда же медленнее, то немного более, нежели первой ее степени».

*) Римская унция равна примерно 31,1 г.

Опыты Ньютона были повторены в 1915 г. по предложению А. Н. Крылова, в переводе которого мы цитировали «Начала». Хотя методика Ньютона была заметно улучшена, его качественные результаты подтвердились. Однако, пользуясь столь несовершенными методами, трудно было установить количественные законы трения при движении тел в жидкостях и газах. Основные законы трения качения и скольжения твердых тел были установлены на опыте почти через сто лет после выхода в свет «Начал» работами Шарля Огюстена Кулона (1736—1806), наиболее известного открытием закона притяжения электрических зарядов, сделанного независимо от Кавендиша, по обыкновению, не опубликовавшего свои результаты. Чем все это интересно и важно? Наиболее важно, что идеализация явления привела к установлению общих законов. После того как законы установлены, можно выделить и понять «внешние силы», которые приводят к видимому нарушению этих законов. В результате — совершенно новый уровень понимания явлений: «Познай, где свет, — поймешь, где тьма!» (А. Блок).

Интересен также ход мыслей Ньютона. Изложение его, конечно, несовременно, и за деталями рассуждений следить трудно, но общий подход к проблеме не отличается от подхода современного физика. В современных курсах теоретической физики трение вводят, руководствуясь практически такими же соображениями, какими пользовался Ньютон, только обычно ограничиваются трением, пропорциональным скорости, чтобы не слишком сильно «испортить» общие законы. Силы трения здесь действительно выглядят «случайными чертами», которые нужно «стереть». Галилей и Ньютон оставили нам образцы такой работы мысли, выявляющей скрытую красоту законов природы.

Следуя их примеру, мы без стеснения отбросили силы трения при анализе нелинейных колебаний. Оправдано ли это? Может показаться, что нарисованный нами портрет маятника — лишь скверная карикатура реального маятника.



Действительно, что произойдет с портретом на рис. 4.9, если включить даже очень малую силу трения? Замкнутые линии 1, соответствующие колебательному движению, разорвутся и превратятся в спирали, накручивающиеся на точку O. Сепаратриса 2 оторвется от точки (π, 0) и тоже начнет накручиваться на O. Сепаратриса  оторвется от точки (-π, 0) и т. д. (рис. 4.16). Короче, портрет маятника с трением топологически не эквивалентен портрету маятника без трения. Так что же? Выходит, трение нельзя признать случайной и нехарактерной чертой движений маятника? Не будем спешить с ответом.

Поразмыслив еще немного, можно увидеть, что рисование портрета «идеального» маятника все же не было пустым занятием. Во-первых, при малом трении фазовые траектории реального маятника достаточно близки к идеальным. Во-вторых, и это самое главное, при описании солитонов нам встретится уравнение маятника без всяких добавок, подобных силам трения. Иными словами, для теории солитонов важна аналогия не с реальным, а с идеальным маятником. Как мы скоро увидим, солитон Френкеля — Конторовой, как ручной солитон и многие другие, описывается асимптотическими движениями маятника, фазовые траектории которых — сепаратрисы 2 и . Поэтому с точки зрения теории солитонов трение в реальном маятнике, действительно, нехарактерно и случайно, а портрет идеального маятника — очень удачная карикатура. Добавление «нехарактерной детали» — трения — не только не улучшает ее, но катастрофически портит, уничтожая самое важное.

Наконец, последнее замечание. Для описания движений маятников было использовано некоторое количество математики. Необходимо ли это? Если бы нас интересовали лишь движения реальных маятников, можно было бы обойтись законом сохранения энергии, простыми геометрическими соображениями и здравым смыслом, почерпнутым из простых наблюдений. Для понимания наиболее интересных асимптотических движений этого, однако, мало, и знание математического языка хотя бы в объеме этой главы реально необходимо. О мере, в какой оно необходимо, хорошо сказал Л. И. Мандельштам в «Лекциях по колебаниям». Изложив «без всякой математики» простую картину описания колебаний грузика в желобе на языке сохранения энергии, он продолжает: «В такой простой картине все следует из наглядности. Зачем же мы проделали в прошлый раз ряд математических выводов? Дело в том, что «житейские» разговоры, в сущности, грешат в одном месте. Пусть кинетическая энергия грузика меньше максимальной потенциальной. Мы знаем, что в таком случае грузик должен остановиться. Но уверены ли мы, что он дойдет до точки остановки за конечное время? Ведь только при этом условии можно говорить о периодическом движении с конечным периодом. А что будет в случае лимитационного движения *)? Может быть, и в этом случае частица доходит до крайнего положения за конечное время? Здесь наглядные рассуждения ничего не дают, а необходимо математическое исследование. Без него вы не получите серьезного ответа. Начинающему часто кажется: к чему вся эта математика? Ему кажется, что «и так все ясно». Но в действительности какой-нибудь пункт при этом может остаться неясным. Иметь меру требуемой математической строгости — самое трудное для физика. Правильнее будет сказать так: ему необходимо уметь определять эту меру». Будем надеяться, что нам это удалось, и попробуем в том же духе подойти к изучению волн.

*) Это то же самое, что движение по сепаратрисе (см. (4.9)).

Глава 5