Многоликий солитон — страница 7 из 11

ОТ МАЯТНИКОВ — К ВОЛНАМ И СОЛИТОНАМ

Певучесть есть в морских волнах

Гармония в стихийных спорах.

Ф. Тютчев

Наглядный образ волн на поверхности воды всем хорошо известен, однако эти волны представляют собой очень сложное явление, и для первого знакомства лучше найти хорошую «карикатуру». Именно так поступил Ньютон, предложивший простую модель распространения звуковой волны. Основная идея Ньютона сводилась к тому, что при распространении волны каждая частица среды колеблется подобно маятнику и движение каждой частицы влияет на движение всех окружающих ее частиц (ближайших соседей).

Дальнейшее упрощение состоит в том, что частицы, которые могут двигаться и одновременно деформироваться, Ньютон заменяет массивными грузиками, соединенными упругими пружинками, лишенными массы. Тогда кинетическая энергия частицы среды сосредоточена на грузиках, а потенциальная энергия упругой деформации частицы запасается в пружинах. (Рассуждения Ньютона здесь, конечно, модернизированы, но ход его мыслей передается достаточно точно.) Даже после этих серьезных упрощений модель реальной трехмерной среды еще слишком сложна. Следующий шаг приводит к задаче, которая решается точно.

Волны в цепочке связанных частиц

Рассмотрим цепочку одинаковых частиц с массой m, соединенных упругими пружинками и движущихся по прямой. Физики называют эту систему моделью одномерного кристалла. Условимся поэтому называть частицы «атомами». Кавычки напоминают о том, что эти «атомы» пока не имеют никакого отношения к реальным физическим атомам. В дальнейшем мы их опускаем.

Пусть длина каждой пружинки в недеформированном состоянии равна α. Тогда покоящиеся атомы, перенумерованные, как указано на рис. 5.1, будут располагаться в точках с координатами , т. е. равновесное положение n-гo атома определяется координатой x0n. Допустим теперь, что атомы отклонены от равновесного положения, так что координата n-гo атома равна хn (верхнее положение). Обозначим отклонение атома от равновесного положения буквой yn = хn - х0n = хn - nα и отложим отрезки yn над соответствующими точками x0n = .



Соединив их плавной кривой, получим график, изображающий отклонения атомов от положений равновесия.

Плавная кривая получится, конечно, не всегда. Если отклонения каких-нибудь соседних атомов отличаются достаточно сильно, то у кривой будут резкие изломы. Мы поэтому предположим, что наклон графика отклонений очень медленно меняется, Т. е. разность двух последовательных углов αn по модулю много меньше самих углов.

При этом получится плавная кривая, мало изменяющаяся на расстоянии α, и наша модель будет достаточно точно воспроизводить смещения частицы в непрерывной (сплошной) среде. Другими словами, если мы хотим на модели воспроизвести распространение волны в сплошной среде (упругая волна в стержне, звуковая волна в органной трубе, волна на скрипичной струне и т. д.), нужно брать частички малыми и располагать их на малых расстояниях друг от друга. Сверх этого, длина волны λ должна быть много больше расстояния между атомами.

Картину распространения волн в такой цепочке можно изучить на очень простом устройстве, для изготовления которого нужна хорошая и достаточно длинная плоская резиновая лента и большие скрепки (см. рис. 5.2). Разумеется, эта система гораздо сложнее, чем идеальная одномерная цепочка, и к тому же очень несовершенна.



Главный ее недостаток — большие потери на трение в резине. Достоинство ее — небольшая скорость распространения волн. Это позволяет наблюдать бегущие по цепочке волны невооруженным глазом. Скорость распространения возбуждений можно изменять, утяжеляя скрепки. Интуитивно ясно, что с увеличением массы скрепок эта скорость должна уменьшаться.

Если скрепки закреплены на ленте в их центрах тяжести, так что сила тяжести не создает дополнительного вращательного момента, действующего на скрепки, то эта система вполне аналогична линейной цепочке. При этом угол φn аналогичен отклонению yn, а роль массы грузика играет момент инерции скрепки.



Вместо возвращающей упругой силы нужно рассматривать момент упругой силы, возникающий при скручивании резинки. Короче, аналогия здесь такая же, как аналогия колебаний грузика на пружинке и крутильных колебаний.

Еще одно существенное отличие нашей грубой модели от идеальной бесконечной цепочки связано с отражением волн от границ. Это происходит примерно так, как указано на рис. 5.3, где изображены графики отклонений грузиков или скрепок в последовательные моменты времени. Горбику соответствует смещение грузиков в положительном направлении оси х, впадине — в отрицательном. Когда горбик подходит к стенке, крайняя, закрепленная пружина начинает тянуть крайний грузик влево, он тянет соседние грузики, и в результате направо побежит впадина.

Если вместо продольных движений грузиков изучать их поперечные движения (в направлении оси у в плоскости ху), то графики рис. 5.3 изображают форму поперечного импульса в цепочке. Наблюдать такие импульсы и волны можно с помощью мягкой и достаточно длинной резиновой трубки. Проделать соответствующие простые опыты несложно, и читатель может проявить здесь фантазию и изобретательность.

В резиновой трубке или ленте, закрепленных на концах, легко возбуждать стоячие волны. Особенно легко возбуждается колебание, в котором нетрудно узнать «полусинусоиду». При этом все точки колеблются в одинаковой фазе, и амплитуда колебаний максимальна в середине («пучность» стоячей волны). Длина такой стоячей волны равна удвоенной длине ленты *). Труднее возбудить колебание, в котором остается в покое середина («узел» стоячей волны). На всей ленте при этом укладывается «период синусоиды», и длина волны равна длине ленты. Чтобы возбудить такое колебание, нужно оттянуть ленты в противоположные стороны на равных расстояниях от краев, удерживая середину в покое. Легче наблюдать такую волну на приборчике со скрепками. Возбудив какие-либо колебания в этой цепочке (лучше всего это делать быстрым, легким щелчком по скрепке), можно просто остановить среднюю скрепку. При этом «выживет» колебание, в котором средняя скрепка покоится.

*) Ниже мы увидим, что синусоидальную стоячую волну можно представить в виде суммы двух одинаковых волн, бегущих в противоположных направлениях. Длина стоячей волны, по определению, совпадает с длиной этих бегущих волн.

Стоячие волны разных типов, в которых на всей длине ленты укладывается разное число N полуволн, называются нормальными модами колебаний (или просто модами; это слово происходит от латинского modus, т. е. образ, способ). Моды с малыми значениями N называются низшими, а с большими — высшими. Моду с N = 1 естественно называть основной, она возбуждается легче всего. При произвольном начальном возбуждении нашей системы возбуждаются разные моды, однако высшие моды не только труднее возбуждаются, но и быстрее затухают из-за трения. Потому-то их и труднее наблюдать.

Понять, что такое моды и как они себя ведут, проще всего на модели одномерной цепочки конечной длины с закрепленными концами. Сначала посмотрим, как колеблется простейшая цепочка из двух атомов. Пусть их равновесные положения равны x01 = α и x02 = 2α, а крайние пружинки закреплены в точках x00 = 0 и x03 = 3α (см. рис. 5.1). Легко составить уравнения движения атомов.

Прежде чем это сделать, введем одно небольшое новшество в обозначениях. До сих пор нам приходилось иметь дело лишь с производными по времени, и мы их обозначали штрихом. При изучении колебаний в распределенных системах встречаются не только производные по времени, с помощью которых записываются скорости и ускорения отдельных частичек, но и производные по координате. Они характеризуют изменение отклонения при переходе от одной частицы к другой в один и тот же момент времени. Поэтому условимся обозначать производную по времени не штрихом, а точкой, а штрих сохраним для производной по координате. Теперь мы будем обозначать скорость n-гo грузика как , а его ускорение — как .

Уравнения движения грузиков можно тогда написать в виде



Действительно, сила, с которой левая пружина тянет первый грузик, равна произведению модуля упругости k на удлинение пружины y1, и при y1 0 эта сила направлена в отрицательном направлении оси х. Так получается член ky1 *). Удлинение правой пружины равно (y2 - y1), и она тянет грузик с силой k(y2 - y1). Это дает второй член в правой части первого уравнения. Точно так же находим силу, действующую на второй грузик.

*) Предполагается, что упругие свойства пружины соответствуют закону Гука. Нелинейность зависимости силы отклонения вводится с помощью других, дополнительных источников силы.

На первый взгляд может показаться, что решить эти уравнения очень сложно. Однако они линейны, а это значит, что достаточно найти лишь некоторый запас решений. Их линейные комбинации, возможно, и дадут самое общее решение.

Для начала попробуем получить хоть какие-нибудь решения. В этом нам поможет физическая интуиция. Действительно, вслед за Ньютоном мы представляем себе простейшую бегущую волну как процесс распространения гармонического колебания от одной частицы к другой. Тогда стоячая волна — это просто установившиеся колебания всех частичек с разными амплитудами. Сделаем простейшее предположение: допустим, что все частицы колеблются гармонически и притом с одинаковой частотой ω, и посмотрим, что отсюда следует.

Для гармонических колебаний ускорение пропорционально отклонению, т. е. = -ω2y1 и   = -ω2y2. Подставляя это в уравнения (5.1), получаем простую линейную систему уравнений для y1 и y2:



Здесь ω02 = k/m, а ω — не определенная пока частота наших гипотетических колебаний.

Ясно, что у этой системы уравнений относительно неизвестных y1 и yесть неинтересное решение y1 = y2 = 0. Пусть y1 0. Тогда, выражения y2 через y1 из первого уравнения и подставляя полученное выражение во второе уравнение, найдем, что должно выполняться условие



Так как y1 0, то выражение в квадратных скобках должно быть равно нулю *). Решая квадратное уравнение для ω2, определяем два возможных значения частоты



*) Если хотя бы в один момент времени y10, то множитель в квадратных скобках, не зависящий от времени, должен обращаться в нуль.

Если ω = ω1, то из уравнений (5.2) следует, что y2 = y1. Если ω = ω2, то y2 = -y1. Вспомним теперь, что y1 и y2 подчиняются уравнениям = -ω2yn, которые определяют их гармоническую зависимость от времени. При ω = ω1 = ω0 можно поэтому записать решение в виде

y1 = y2 = А1 cos [ω1 (t - t1)], (5.5а)

а при ω = ω2 =  — в виде

y1 = -y2 = А2 cos [ω2 (t - t2)]. (5.5б)

Здесь A1 и А2 — произвольные амплитуды, а t1 и t2 — произвольные значения времени, определяющие фазу колебаний.

Эти два решения и дают две возможные моды колебаний нашей простейшей системы (рис. 5.4).



Они соответствуют двум нашим модам колебаний резинки, изображенным на рисунке штриховыми линиями. Конечно, это соответствие несколько условно, но, согласитесь, от карикатуры, сделанной двумя точками, нельзя требовать большего! Теперь можно снова воспользоваться линейностью уравнений (5.1) и написать решение в виде суммы решений (5.5а) и (5.5б):



Это движение уже не сводится к простому гармоническому колебанию каждой из частиц. В общем случае, т. е. при произвольных значениях А1, А2, t1, t2, движение системы не будет даже периодическим.

Упражнение: рассмотрите простой случай, когда А1 = А2 = 1, t1 = t2 = 0, и покажите, что из-за несоизмеримости частот ω1 и ω2 не существует такого значения Т, при котором y1(Т) = y1(0), y2(Т) = y2(0). Это и означает, что такое движение не может быть периодическим.

Ясно, что формулы (5.6) дают самое общее движение. Начальное состояние определяется координатами и скоростями частиц, т. е. значениями y1(0), y2(0), . Формулы (5.6) и их производные по времени позволяют найти неизвестные константы А1, А2, t1, t2 через начальные координаты и скорости.

Замечательно, что нам удалось не только найти самое общее движение, но и разложить его на сумму самых простых из известных нам движений.



Конечно, в такой простой задаче то же самое можно было бы сделать и более простым способом. Например, если сложить и вычесть уравнения (5.1), то легко получить два независимых уравнения для (y1 + y2) и (y1 - y2), которые сразу решаются и приводят к формулам (5.6).

Однако наш чуть более длинный способ решения имеет преимущество — он легко обобщается на случай цепочки с любым числом частиц.

В качестве упражнения найдите частоты трех мод колебаний цепочки, состоящей из трех частиц. Для частот должен получиться результат: . Сами моды выглядят, как показано на рис. 5.5. Точный смысл этого рисунка (как и рис. 5.4) состоит в том, что моду с номером М можно представить в виде



При заданном М = 1, 2, 3 индекс n пробегает три значения: n = 1, 2, 3, т. е.  задает отклонение n-гo грузика в М-й моде. В случае двух частиц отклонения для двух мод можно написать в аналогичном виде



где М = 1, 2 и n = 1, 2.

Общую закономерность теперь нетрудно уловить и она наглядно ясна — нарисованные штрихами синусоиды соответствуют стоячим волнам. Легко также догадаться, что в цепочке из N частиц моду с номером М надо искать в виде



Уравнение движения для n-гo атома составляется точно так же, как уравнения (5.1), т. е.



Это уравнение годится и для крайних атомов — первого и N-гo. Нужно только вспомнить, что крайние пружинки закреплены, т. е. у0 = yN+1 = 0. Эти условия для предполагаемых решений (5.7) уже выполнены. Теперь должно быть ясно, как довести решение до конца. Надо подставить выражение (5.7) в уравнение (5.8) и заменить на -ω2Myn(М). После несложных преобразований тригонометрических функций получится соотношение для ω2M, при выполнении которого все уравнения (5.8) удовлетворяются; это выражение мы приведем без вывода





Эта зависимость частоты от номера моды изображена на рис. 5.6. Для мод с малыми номерами (низкочастотных и длинноволновых) частота пропорциональна номеру моды. Для высокочастотных мод (коротковолновых) частота выходит на предельное значение 2ω0.

Формула (5.9) определяет спектр частот собственных колебаний (мод) цепочки. Не удивительно, что в цепочке из N частиц имеется ровно N собственных частот. Нетрудно понять и происхождение предельной частоты. Если один из грузиков колеблется слишком быстро, то соседние не успевают реагировать на его движение, и возбуждение не сможет распространяться вдоль цепочки. Этот вывод легко проверить, проделав простые опыты.

Читателю стоит потратить некоторое время, чтобы самостоятельно разобраться в этих результатах. Затраченные усилия полностью окупаются. После уравнений Галилея — Ньютона и принципа сохранения энергии разложение произвольного движения на моды, или нормальные колебания, представляет собой, возможно, самой фундаментальный результат физики. Его обобщения и приложения, от простых механических задач до современных проблем физики элементарных частиц, просто невозможно перечислить.

Отступление в историю. Семья Бернулли и волны

Эти простые наблюдения отвлекли нас от первоначальной задачи Ньютона — вычисления скорости распространения волны. Скоро мы к ней вернемся, а сейчас сделаем небольшое отступление в историю. Хотя Ньютон привел лишь решение задачи о вычислении скорости бегущей волны, он, конечно, размышлял и о стоячих волнах. В самом конце того раздела «Начал», в котором определяется скорость распространения звука, он очень коротко говорит об основной частоте тона органных труб и высказывает догадку, что длина стоячей звуковой волны в трубе, открытой на одном конце, равна учетверенной длине трубы. Представления о других возможных модах, равно как и ясного понятия о стоячих волнах вообще, у Ньютона нет.

Полная теория колебания в одномерной цепочке была построена Иоганном Бернулли (1667—1748) и его сыном Даниилом Бернулли (1700—1782). Вместе с братом Иоганна Якобом Бернулли (1654—1705) они — наиболее выдающиеся представители знаменитой династии швейцарских ученых. Семья Бернулли эмигрировала из Антверпена в ХVI в. спасаясь от жестокостей испанских завоевателей, и в конце концов осела в Базеле. Якоб и Иоганн Бернулли были учениками Лейбница и стали крупнейшими математиками своего времени. Под руководством Иоганна Бернулли изучали математику его сын Даниил и Леонард Эйлер. Семья Бернулли была тесно связана с Россией. В 1725 г. Даниил уехал в Петербург, где оставался до 1733 г. В следующем году за ним последовал и Эйлер, который провел в России почти полжизни. Бернулли и Эйлер опубликовали многие свои сочинения в трудах Петербургской академии наук и были ее членами.

Существование нормальных мод было установлено отцом и сыном Бернулли, а возможность разложения произвольного движения цепочки по нормальным модам (принцип суперпозиции, или принцип сложения колебаний) была открыта Даниилом Бернулли. Он был самым выдающимся физиком в семье Бернулли; наиболее знамениты его достижения в гидродинамике, кинетической теории газов и в теории колебаний. Надо отметить, что принцип суперпозиции, с помощью которого мы так просто изучили общее движение цепочки по легко определяемым нормальным модам, был признан и вошел в науку не сразу. В числе его противников были даже Эйлер и Лагранж. В своих исследованиях они очень близко подошли к открытию этого принципа, но имели достаточно серьезные основания сомневаться в его справедливости, о которых будет сказано чуть позже.

Впоследствии одномерную цепочку в связи с распространением звуковых волн в газах, жидкостях и твердых телах изучали Лагранж и Коши. Особенно полную теорию цепочек, состоящих из атомов разных сортов, разработал в конце прошлого века Кельвин. Он применил свою теорию к распространению световых волн в твердых телах и нашел простое объяснение явления дисперсии света *), открытого в середине XVII в. чешским ученым Яном Маркусом Марци и вновь открытого Ньютоном, не знавшим о работах Марци (вспомним о знаменитом опыте Ньютона по разложению солнечного света в спектр с помощью призм). Замечательная и глубокая работа Кельвина не была полностью понята и оценена современниками, а его модель была возрождена уже в двадцатом веке, когда начали изучать кристаллические решетки, состоящие из реальных атомов.

*) Слово «дисперсия» означает в переводе с латинского рассеяние, разброс. В оптике дисперсией обычно называют явление зависимости показателя преломления от частоты или длины волны. В общей теории волн дисперсию связывают с зависимостью скорости волны от ее длины, а соотношение между частотой и длиной волны называют дисперсионной формулой. Дисперсия очень важна в теории солитонов, и мы изучим ее подробно.

Волны Д'Аламбера и споры вокруг них

Воображение принимает в творчестве геометра не ме-

нее участия, чем в минуты вдохновения у поэта.

Д'Аламбер

После исследований Бернулли по одномерным цепочкам Эйлер начал изучать колебания и струны, не пытаясь представить ее с помощью простой модели, а считая ее сплошной средой. При этом движение струны определено, если известно ее отклонение от положения равновесия у (t, х) как функция координаты х и времени. В уравнение, описывающее движение струны, входят, как мы увидим, не только производные по времени , но и производные по координате у". Такие уравнения называются уравнениями с частными производными. Их систематическое изучение, которое продолжается и в наши дни, было начато Эйлером. Движения струны описываются очень простым уравнением, с которым мы познакомимся чуть позже. Опираясь на исследования Эйлера, знаменитый французский математик и энциклопедист *) Жан ле Рон Д'Аламбер (1717—1783) нашел в 1748 г. его решение

у (t, х) = f (х - vt) + g (х + vt) , (5. 10)

в котором f и g могут быть произвольными функциями.

*) Вместе с Дени Дидро он возглавил работу над монументальной «Энциклопедией наук, искусств и ремесел», 33 тома которой вышли в свет с 1751 по 1777 гг. Это была первая в мире энциклопедия в современном смысле слова.

Это замечательное решение, которое называется решением Д'Аламбера (или волной Д'Аламбера), описывает все возможные движения струны при соответствующем выборе функций f и g **). Например, если g = 0, то решение Д'Аламбера дает волну, бегущую по оси х направо со скоростью v. Скорость v не произвольна, а определенным образом зависит от упругости и силы натяжения струны (характер этой зависимости сейчас нам не важен).

**) Так как решение Д'Аламбера описывает любые волны, которые могут распространяться по струне, то, зная это решение, можно вообще забыть об уравнении. Точно так же для описания всех возможных движений точечной частицы, на которую не действуют внешние силы, достаточно знать галилеев закон движения xx0 + vt, забыв об уравнении Ньютона.

Если положить f (х) = sin (2πх/λ), то получим синусоидальную бегущую волну



Записывая эту волну в более привычном виде



находим обычное соотношение между частотой и длиной волны: . Общее решение (5.10) описывает и движение волнового импульса, изображенного на рис. 5.3. Описывает оно и стоячие волны. Например, если взять

f (х) = g (х) = ½ sin (2πх/λ),

то легко найти, что

у (t, х) = sin (2πх/λ) cos (2πvt).

В общем случае, если заданы начальные значения отклонений и скоростей всех точек струны, т. е. значения у и  при t = 0 и всех значениях х, то можно найти вид функций f и g при всех значениях аргументов и тем самым определить все дальнейшее движение струны. Точно так же по начальным отклонениям и скоростям двух грузиков определялись неизвестные параметры А1, А2, t1, t2 в формуле (5.6); только теперь вместо неизвестных параметров определяются неизвестные функции f и g.

Мы еще не раз встретимся с конкретными применениями решения Д'Аламбера, а сейчас лишь отметим, что именно оно и вынудило Эйлера и Лагранжа отказаться от принципа суперпозиции Даниила Бернулли. Действительно, согласно этому принципу общее движение струны можно было бы представить как сумму (суперпозицию) гармонических синусоидальных движений, а это означало бы, что произвольную функцию можно представить в виде суммы тригонометрических функций. Такая возможность казалась Эйлеру и Лагранжу совершенно невероятной. Поэтому они придерживались мнения, что принцип суперпозиции хорош для систем из конечного числа материальных точек, но неприменим к таким «сплошным» объектам, как струна.

Разрешить многолетние споры вокруг этой проблемы сумел лишь Фурье в 1807 г., который показал, что произвольную функцию, определенную на конечном отрезке, действительно можно представить в виде бесконечной суммы тригонометрических функций. Это обобщение разложения на моды носит название ряда Фурье. Любопытно, что при доказательстве своей фундаментальной теоремы Фурье в наибольшей степени опирался на исследования Эйлера и Лагранжа. Отрицание Лагранжем принципа суперпозиции кажется тем более удивительным, что именно он первым ясно установил связь между колебаниями цепочки частиц и движениями струны.

Пора, видимо, написать это уравнение *). До сих пор оно было чем-то вроде таинственного персонажа в пьесе, которого все боятся, но никто не видел, и можно подумать, что это уравнение окажется очень сложным. На самом деле несложно догадаться, что уравнение должно быть очень простым, если у него так просто выглядит общее решение. В чем же состоит необычайная простота решения Д'Аламбера? Она заключается в том, что решение выражено через произвольные функции f и g, но каждая из них реально зависит не от координаты и времени, а от простейшей их линейной комбинации. Мы можем просто нарисовать графики функций f(x) и g(x) и двигать их равномерно в противоположных направлениях оси х. Сумма таких функций и будет в каждый момент времени изображать решение Д'Аламбера.

*) для понимания дальнейшего знать это уравнение полезно, но не обязательно. Вполне достаточно освоиться с бегущими волнами Д'Аламбера (5.10).

Это легко описать математически. Сначала найдем уравнение для волны, бегущей направо. Вспоминая определение производной получаем



Выбирая Δx = -vΔt, находим, что . Точно так же можно убедиться, что . Эти уравнения описывают волны, которые могут распространяться лишь в одну сторону. Такие уравнения полезны, если мы хотим описать распространение волны горения или нервного импульса. Для того чтобы найти уравнение, описывающее волны, бегущие в двух направлениях, проще всего поступить так. Заметим, что f и f' также зависят только от х - vt, и поэтому обе функции удовлетворяют тому же уравнению, что и f. Исключив смешанную производную f', легко найти, что . Точно так же убеждаемся, что . Так как операция дифференцирования линейна, то отсюда следует, что у = f + g удовлетворяет уравнению



Это и есть волновое уравнение Д'Аламбера. Мы получили его не из физической модели, а просто показали, что сумма любых двух функций f (х - vt) и g (x + vt) удовлетворяет этому уравнению. Ссылаясь на авторитет Д'Аламбера, мы утверждаем и обратное: всякую функцию у (t, х), производные которой по времени и координате удовлетворяют соотношению (5.11), можно представить как сумму двух таких функций.

Это простое уравнение и его обобщения на случай функций, зависящих от нескольких координат, играют такую же роль в физике непрерывных систем, как уравнение движения простого линейного маятника в механике материальной точки (в новых обозначениях оно записывается в виде ). Удивительно, что переход от одной точки к такому бесконечно более сложному объекту, как струна, «состоящая» из бесконечного числа точек, привел к столь простой теории. Удивительно также необычайное число приложений волнового уравнения — от волн в «океанах воды, воздуха и эфира», как сказал бы Рассел, — до волн, описывающих элементарные частицы.

В наше время волновое уравнение стало настолько привычным, что его эффективности никто уже не удивляется. Однако если попытаться мысленно охватить все, что было сделано с помощью этого уравнения, вообразить, какое богатство явлений природы скрывается за столь простой формулой, то эпитеты «удивительное» или «необычайное» не покажутся не уместными. Один выдающийся современный физик как-то написал популярную статью «О непостижимой эффективности математики в естественных науках». В эффективности волнового уравнения, конечно, есть что-то непостижимое, что бы ни говорили люди, которые умеют объяснить все. 

О дискретном и непрерывном

...Между отдельными существующими вещами всегда

находятся другие, а между ними опять другие. И, та-

ким образом, сущее беспредельно.

Зенон из Элеи, V в. до н. э.

Вернемся, однако, к «суровой прозе», воплощенной в уравнении (5.8). Оно связано не с близкой музам струной, а с прозаическими «грузиками на пружинках», да и выглядит куда менее элегантно, чем волновое уравнение. Тем не менее эти уравнения тесно связаны друг с другом. Это не удивительно, если наша (т. е. ньютонова) «грузопружинная» модель может дать разумное приближенное описание волн в сплошных средах. Первым это установил в 1754 г. все тот же неутомимый Лагранж, но окончательной ясности добился лишь Коши (1830 г.).

Он показал, каким образом можно найти движение струны по начальным значениям отклонений и скоростей точек струны (в математике эта задача и называется задачей Коши). Он также связал решения волнового уравнения, полученные методами Д'Аламбера и Фурье, доказав полную справедливость принципа суперпозиции, и даже попытался объяснить дисперсию света в веществе, считая, что свет возбуждает упругие волны с очень высокой частотой. Коши очень ясно показал, что при длинах волн, много больших расстояний между частицами в цепочке, скорость распространения волн в цепочке не зависит от длины волны, т. е. нет дисперсии. Для коротких же волн скорость зависит от длины волны и может заметно изменяться. Это полностью справедливо для упругих волн, но дисперсию световых волн объясняет лишь качественно. Более точную модель дисперсии света нашел, как уже упоминалось, Кельвин.

Понимание связи между ньютоновской дискретной средой (от лат. discгetus — прерывистый, разделенный) и эйлеровой непрерывной средой очень важно, так как в разных случаях удобно переходить от дискретного языка к непрерывному и обратно.

Например, если изучаются упругие волны в кристаллах, то обычно можно забыть об их атомной структуре и считать кристалл просто непрерывной упругой средой. Атомная структура скажется на том, что упругие свойства кристалла будут разными в разных направлениях. Мы, однако, пойдем намеченным путем, так как у нас есть надежные уравнения (5.8), описывающие движения каждой точки дискретной системы.

Предположим для определенности, что грузопружинная модель, изображенная на рис. 5.1, должна приближенно воспроизводить продольные колебания и волны в упругом стержне. Точно так же можно рассмотреть звуковые волны в трубе, поперечные колебания струны и т. п. Идея перехода к непрерывной среде ясна: нужно уменьшать массы грузиков и длины пружинок так, чтобы средняя линейная плотность (т. е. масса на единицу длины ρ1 = m/α) и упругость пружины оставались постоянными.

Сначала надо немного точнее определить, что такое упругость пружины. В правой части уравнения (5.8) написана сила, действующая на n-й грузик при растяжении n-й пружины с длиной α на величину Δl: F = k (yn+1 - yn) = kΔl. Значение коэффициента k должно подбираться так, чтобы стержень и пружинная система одинаковой длины растягивались на одну и ту же величину под действием одной и той же силы.

Удлинения стержня и пружины пропорциональны их длине. Например, если пружинка удлиняется на Δl, то обе ее половинки удлиняются на Δl/2. Это значит, что коэффициент k для пружинки длиной α/2 равен просто 2k. Поэтому, записав силу F = kΔl в виде F = kα(Δl/α), мы получим характеристику упругости пружины, не зависящую от ее длины: для пружины любой длины α величина = К одна и та же. Для стержня любой длины l также будет верно соотношение  F = К(Δl/l). Значение К определяется только упругостью стержня и не зависит от его длины.

Уравнение (5.8) легко переписать так, чтобы оно зависело лишь от ρ1 = m/α и К = , а не от m и k. После этого можно показать, что для волн, длина которых много больше α, можно при достаточно малых значениях α описать распространение волн в стержне уравнением Д'Аламбера



Движение каждой частицы стержня определяется, если известно решение у (t, х) этого уравнения: уn (t) = y (t, x = ). Скорость распространения упругих волн по стержню очевидно равна . В качестве упражнения попробуйте «вывести» уравнение (5.12) из уравнения (5.8).

Скорость распространения волн по цепочке можно найти, и не прибегая к уравнению Д'Аламбера. Если по цепочке бежит волна неизменной формы со скоростью v, то она перемещается на расстояние α за время  Δt = α/v.



Отсюда следует, что yn-1(t) = yn(t + Δt) и yn+1(t) = yn(t - Δt) (рис. 5.7). Если рассматривать yn(t) как график движения некоторой точки, то (t) будет скоростью, а (t) — ускорением точки. Приближенно считая движение от момента t - Δt до момента t + Δt равномерно ускоренным, можно написать



Подставляя полученные таким способом выражения для yn-1(t) и yn+1(t) в уравнение (5.8), находим, что [m - kt)2](t) = 0. Отсюда следует, что (Δt)2 = m/k (предполагается, конечно, что в какой-нибудь момент времени 0). Для скорости волны v = αt находим поэтому выражение



Чтобы найти скорость распространения упругих волн (т. е. скорость звука) в реальных твердых телах, надо еще немного преобразовать формулу . В таком виде она, на первый взгляд, зависит не только от вещества, из которого изготовлен стержень, но и от его поперечного сечения S. Действительно, линейная плотность равна произведению обычной объемной плотности ρ на поперечное сечение: ρ1 = ρ • S. Однако упругая постоянная К численно равна силе, необходимой для увеличения длины стержня в два раза (F = Кl/l) = К, если Δl = l; при реальном измерении К, естественно, рассматривается лишь малое относительное удлинение Δl/l и К определяется как отношение силы F к вызванному ею относительному удлинению). Ясно, что эта сила пропорциональна площади S, и поэтому К = Е • S, где величина Е уже не зависит от S, а определяется лишь материалом, из которого сделан стержень.

Эту постоянную Е называют модулем Юнга. Значения модуля Юнга и объемной плотности для различных материалов измерены на опыте, и их можно найти в справочниках. Например, для стали ρ = 7,8 г / см3, Е 2,1 • 1012 г/(см • с2). Выражая ρ1 и К через ρ и Е, находим скорость звука в стали v = 5 км/с. Это неплохо согласуется с прямыми измерениями.

Подумайте, как их можно было бы осуществить. Ясно, что легче измерять не скорость, а длину волны . При 10 кГц получаем λ 50 см.

Как измерили скорость звука

До конца XVIII в. думали, что звук в твердых телах передается мгновенно. Первое измерение скорости звука в твердых телах по отношению к скорости в воздухе выполнил в 1797 г. немецкий ученый Эрнст Хладни (1756—1827). Он же провел первые точные и тщательные измерения скорости звука в различных газах, пользуясь для этой цели органными трубами. Хладни получил юридическое образование, а естественные науки изучал самостоятельно. Под влиянием чтения сочинений Бернулли и Эйлера он заинтересовался акустикой и начал изучать звучащие пластинки, в результате чего открыл прославившие его «звуковые фигуры» *). Фигуры Хладни образуются на посыпанных песком колеблющихся пластинках (песок собирается в узлах стоячих волн).

*) Первым сумел сделать звуковые колебания «видимыми» Галилей. Он поместил бокал в воду так, чтобы края его немного выступали над поверхностью. При возбуждении в бокале звуковых колебаний около него на поверхности образуется радиальная рябь поверхностных волн.

Хладни также открыл продольные и вращательные колебания в стержнях, открыл и изучил многие акустические колебательные явления, изобрел несколько музыкальных инструментов, на которых сам играл. Его опыты, всегда отличавшиеся изобретательностью и остроумием, заложили основы экспериментальной акустики, и ему принадлежит первое систематическое изложение акустики, выпущенное в свет в 1802 г. Под впечатлением обаяния личности Хладни, его лекций и опытов, Наполеон выделил 6000 франков для перевода его «Акустики» на французский язык.

Скорость распространения звуковых волн можно оценить и просто из соображений размерности. Так как механизм распространения волн нам уже достаточно понятен, нетрудно сообразить, что скорость звука в стержне зависит лишь от модуля Юнга Е, плотности ρ и, может быть, от длины волны λ: v = d•ЕаρЬλс. Так как [Е] = ML-1Т-2, [ρ] = ML-3, [λ] = L и [v] =-1, то а = -b = 1/2, с = 0, т. е. v = d , где d — неизвестное число (как показано выше, из формулы (5.14) следует, что d = 1).

Любопытно, что простые соображения размерности показали, что скорость звука не может быть пропорциональна какой-нибудь степени. Это значит, что дисперсию (т. е. зависимость скорости от длины волны) из простых соображений размерности получить нельзя. Заметим также, что мы не учли зависимость v от амплитуды колебаний. Это представляется разумным для малых амплитуд, когда эффектами нелинейности можно пренебречь (ср. с формулой (4.1)).

При отсутствии дисперсии из соображений размерности следует независимость скорости звука от амплитуды. Проверьте это, предположив, что в формуле размерности для v показатель с = 0, но введя зависимость от амплитуды.

Точно так же можно оценить скорость звука в жидкостях, например в воде. Только в этом случае вместо модуля Юнга надо взять модуль объемной упругости жидкости К. Он определяется соотношением Δp = KV/V), где Δp — приращение давления, необходимое для того, чтобы уменьшить объем V на величину ΔV. Эта формула совершенно аналогична соотношению F/S = El/l) для стержня, и мы сразу можем найти скорость звука в жидкостях: . для воды ρ = 1 г/см3 , К 2,13•1010 г/(cм•c2), так что v 1460 м/с. Заметьте, что скорость звука зависит от плотности, а значит, несколько меняется с температурой.

Между прочим, до начала XIX в. распространение звука в жидкостях считалось невозможным. Хладни придерживался противоположного мнения, но попыток измерить скорость звука в жидкостях не делал. Первое измерение было выполнено в год смерти Хладни швейцарскими учеными Жаном Колладоном и Жаном Штурмом, получившими значение v = 1435 м/с при температуре 8 0С.

Читатель легко найдет и скорость распространения поперечных волн в натянутой струне. В этом случае возвращающая сила пропорциональна силе натяжения струны F, и при малом изгибе и растяжении струны не зависит от ее упругости. Предполагая, что v = dFaρlЬ, где ρl — линейная плотность струны, покажите, что ; из опыта и из более полной теории следует, что d = 1. Это соотношение в равной степени применимо к металлической струне, нитке и рыболовной леске.

Опыты удобнее всего делать с леской. Изменяя ее натяжение, можно менять частоту основного тона, который можно отождествить с одной из нот, извлекаемых на фортепиано. Нота «ля» первой октавы обычно настраивается с помощью камертона на частоту  = 440 Гц. Частоты , соответствующие другим нотам, определяются соотношением log(/) = (n/12)log2. Для «ля» во второй октаве n = 12 и частота равна 2. При ходе от  на октаву ниже n = -12 и частота равна /2.

Определяя частоты с помощью фортепиано или другого музыкального инструмента, можно найти скорость распространения волны по формуле v = λ, так как длина волны основной моды для струны с закрепленными концами равна удвоенной длине струны. Пользуясь этой простой идеей, Хладни и определил на опыте скорости звука в газах и твердых телах, только частоты он определял не на фортепиано, а на монохорде. Хорда в переводе с древнегреческого — струна, и монохорд можно назвать «однострунником». Это просто струна на резонаторе, длину звучащей части которой можно менять. Монохорд, вероятно, изобрел Пифагор. Он же первым открыл простые соотношения между музыкальными интервалами.

Легко найти и скорость звука в газах. Аналог модуля упругости в этом случае — давление. Действительно, из закона Бойля—Мариотта pV = const следует, что V•Δp + p•ΔV = 0, т. е. Δp = -pV/V). Подставляя в формулу для скорости звука в жидкости вместо модуля объемной упругости давление, находим . Эту формулу получил Ньютон, который пользовался описанной в начале этой главы дискретной моделью. Рассуждения Ньютона были весьма сложны и стали понятны лишь после работ Бернулли, Эйлера и Лагранжа. Лагранж писал: «эта теория одними почиталась за непонятную, другие находят ее противоречивой, в сущности же, если она и обладает каким недостатком, то тем, что она слишком частная, но вместе с тем она содержит зачаток истинной теории, открытой лишь в последнее время при помощи анализа».

Кроме того, величина v, полученная Ньютоном, сильно расходилась с наблюдаемым значением *). Это было известно Ньютону, но его объяснение этого расхождения нельзя признать ни понятным, ни убедительным. Эта трудность только усилилась после опытов Хладни, который выяснил, что формула Ньютона сильно расходится с опытом и для других газов. Bычислим по формуле Ньютона скорость v для воздуха. Так как р/ρ = гT, где г — газовая постоянная, а Т — температура, то для воздуха при Т = 273 К = 0 0С получаем v 280 м/с вместо 332 м/с.

*) Первое точное измерение скорости звука в воздухе было сделано в коллективной работе членов Парижской академии наук в 1738 г. Измерялось время, за которое звук пушечного выстрела проходит 30 км. Чтобы исключить влияние ветра, выстрелы производились одновременно из двух пушек, удаленных друг от друга на 30 км.

Правильное объяснение этому расхождению нашел Лаплас, заметивший, что при прохождении звуковой волны температура воздуха в местах сгущения и разрежения различна, и законом Бойля—Мариотта пользоваться нельзя. Вместо этого Лаплас предположил, что изменения состояния газа в звуковой волне происходят столь быстро, что тепло не успевает передаваться от нагревшихся сжатых участков к охладившимся разреженным, т. е. процесс происходит адиабатически **). Правильность его объяснения оспаривалась еще лет тридцать. Тем не менее общая теория волновых процессов уже в начале века твердо стояла на ногах и быстро завоевывала новые области для своих приложений.

**) См. книгу: Смородинский Я. А. Температура. — 2-e изд.— М.: Наука, 1987. — Библиотечка «Квант», вып. 12.

Особенно важно это было для волновой теории света. В работах Френеля волновая теория была настолько основательно разработана, что успешно объясняла не только явления, известные до ее победы, но и подсказывала новые. Единственная неудача постигла волновую теорию в объяснении явлений дисперсии света. Как и в теории звука, в оптике Френеля скорость волны могла изменяться в разных средах, но зависимости скорости от длины волны в одной среде не получалось. Пуассон даже после описанных в ч. 1 опытов сомневался в правильности теории Френеля. Его главное возражение как раз было связано с проблемой дисперсии. В ответе Пуассону Френель указал на молекулярную структуру вещества как на возможный источник дисперсии. К сожалению, ранняя смерть не позволила Френелю развить эту идею, но ее подхватил Коши.

Дисперсия волн в цепочке атомов

Связь дисперсии с атомной структурой проще всего понять в нашей пружинной модели. Хотя при этом речь идет о звуковых, а не о световых волнах, суть дела одна и та же. Эту мысль и развил Коши. Найдем вслед за ним дисперсионную формулу для волн в цепочке «атомов», соединенных пружинками. Вспомнив то, что мы знаем о связи дискретной цепочки со сплошным стержнем, попробуем сразу написать решение всех уравнений (5.8) в виде бегущей волны ():



Если, как это делалось раньше, заменить на х и yn(t) на yn(t, х), то получится знакомая синусоидальная бегущая волна. Ее скорость v определяется из условия постоянства фазы (ωt - 2πх/λ). Поэтому скорость v называют фазовой скоростью. Если двигаться со скоростью v, то волна будет казаться неподвижной.

Так как = -ω2yn, то из (5.8) следует простое уравнение



С помощью известной формулы для преобразования суммы синусов двух углов в произведение легко найти, что для синусоидальной волны yn+1 + yn-1 = .

Подставляя это в уравнение (5.15), легко увидеть, что оно выполнено сразу для всех n, если



Это и есть дисперсионная формула Коши. Если длина волны много больше расстояния между атомами, т. е. , то sin (πα/λ) πα/λ и ω  2πω0(α/λ). При этом дисперсия исчезает, так как скорость не зависит от λ: v (λ) = ωλ/2π αω0 = = v. Этот результат мы уже получили раньше при переходе к «непрерывному» пределу (см. формулу (5.14)). Если длина волны сравнима с расстоянием между атомами, то скорость зависит от λ:



С уменьшением λ она уменьшается. Заметим, что нет смысла рассматривать длины волн, меньшие 2α. Понять это легко, если вспомнить, что наблюдать мы можем лишь движения частиц, а не мысленно проведенные через их отклонения синусоиды (см. рис. 5.5). С учетом этого ограничения скорость убывает при уменьшении длины волны от значения v до значения (2v/π).

Дисперсионную формулу (5.16) можно получить и из найденного нами раньше выражения для частот стоячих волн в цепочке конечной длины l (см. (5.9)). Для этого заметим, что длина волны в моде с номером М равна λМ = 2(N + 1)α/М = 2l/М, где М = 1, ..., N. Дисперсии не было бы, если бы соответствующие частоты ωМ были пропорциональны М. Как мы знаем, такой пропорциональности для больших М нет. Отсюда и возникает зависимость скорости v от λ при малых длинах волн и больших частотах. Выражая правую часть формулы (5.9) через λМ, получаем соотношение Коши (5.16) между ωМ и λМ.

Плавные синусоидальные кривые, огибающие стоячие волны (5.7), можно получить, заменив в формуле (5.7) на х:



Это выражение описывает и стоячие волны в упругом стержне. При этом λМ принимает значения λМ = 2l/M, где M может неограниченно возрастать (М = 1, 2, 3, ...). Значения частот получаются из дисперсионной формулы (5.16), если заменить в ней sin (πα/λ) на πα/λ (вспомните, что в пределе непрерывной среды α → 0):



Аналогичные формулы читатель легко напишет для частот собственных колебаний струн, воздуха в органных трубах и т. д.

Как «услышать» разложение Фурье?

Рояль был весь раскрыт и струны в нем дрожали...

А. Фет

Можно проверить, что функции yM(t, х) в формуле (5.18) удовлетворяют волновому уравнению. Линейные комбинации таких решений также являются решениями. Этот способ решения волнового уравнения открыл еще Даниил Бернулли (метод Бернулли), но лишь Фурье сумел с полной ясностью доказать, что так можно получить самое общее решение и что в этом смысле метод Бернулли равносилен методу Д'Аламбера. Разложение произвольного колебания струны в сумму мод (5.18) и другие подобные разложения (например, разложение бегущей волны на сумму синусоидальных бегущих волн) называются разложениями Фурье. Если периодическая функция f(х) с периодом 2l (т. е. f(х + 2l) = f(х) при любом х) представлена в виде суммы



то легко проверить, что д'аламберова волна (5.10) при g(х) = f(х) представляется в виде суммы мод (5.18), в которой следует положить ωM = 2πvM.

Обычно амплитуды АM быстро убывают с ростом номера моды М. Рассмотрим, например, движение струны, оттянутой в средней точке и после этого отпущенной. Так возбуждаются колебания струн щипковых инструментов. При этом «звучат» все моды *), но их амплитуды быстро убывают с ростом частоты. Ухо воспринимает как высоту звука частоту, соответствующую низшей (основной) моде, а примесь высших мод определяет тембр. Звуки, вызванные очень высокими модами, не воспринимаются по двум причинам. Во-первых, их амплитуда мала. Во-вторых, ухо просто «не слышит» частоты больше 20 кГц (это, кстати, объясняет бедность тембра высоких звуков.)

*) Синусоидальные моды часто называют гармониками, что особенно естественно, если речь идет о музыке. Мы называем гармониками только синусоидальные бегущие волны, так что разложение Фурье для стоячей волны — это разложение на нормальные моды, а для бегущей — разложение на гармоники.

Таким образом, о высших модах часто можно просто забыть и с легким сердцем пользоваться разложением Фурье с конечным и даже небольшим числом членов. Разложение бегущей волны на простые гармоники с полным основанием можно рассматривать не просто как математическое изобретение, а как физический процесс, который наблюдается постоянно. Этот процесс называется гармоническим анализом, а проборы, которые его осуществляют, называют гармоническими анализаторами. Они откликаются (резонируют) **) на гармоники, частота которых близка к одной из собственных частот (т. е. к частоте одной из мод). Таким образом можно выяснить частотный состав произвольного колебания. Простейшие анализаторы звука — монохорд или же просто струны любого музыкального инструмента. При достаточной силе звука они начинают дрожать и даже звучать, если среди набора частот (или, как говорят, в спектре частот) падающей на них звуковой волны есть достаточно сильная составляющая, частота которой совпадает с их собственной частотой.

**) От лат. sonare — звучать, resonare — звучать в ответ, откликаться. Отсюда же «соната».

Как мы знаем, в среде без дисперсии волна с небольшой амплитудой распространяется, не изменяя формы. На языке разложения на гармоники это связано с тем, что все ее простые гармонические составляющие распространяются с одинаковой скоростью. Это можно сказать не только об обычных периодических волнах, но и об импульсах, подобных изображенным на рис. 5.3. Как показал Фурье, такие импульсы тоже можно разложить в ряд по гармоникам. Только при этом в разложении Фурье будут содержаться гармоники с неограниченно возрастающей длиной волны.

В среде с дисперсией импульс тоже можно представить в виде суммы гармоник, но теперь его форма будет изменяться со временем, так как разные гармоники движутся с разными скоростями. Например, горбик, бегущий по дискретной цепочке (рис. 5.3) можно разложить в сумму синусоидальных волн. Однако с течением времени длинноволновые гармоники будут обгонять коротковолновые, и горбик начнет расплываться. Его передняя часть (фронт) постепенно будет становиться более пологой. Для звуковых волн, воспринимаемых человеческим ухом, это обычно совершенно несущественно. Их длины настолько велики, что дисперсия коротких волн, определяемая формулой (5.17), не успевает проявиться.

Несколько слов о дисперсии света

Для световых волн в веществе наша модель не годится. Если попробовать все же применить ее к объяснению преломления световых волн, как это делал Коши, то расстояние между «атомами» получается несуразно большим, порядка 0,1 мкм.

Упражнение: попробуйте получить эту оценку. Напомним, что показатель преломления n (λ) = c/v (λ) (с — скорость света в вакууме) увеличивается для прозрачного стекла лишь на 1 % при переходе от красной части спектра к фиолетовой. В то же время длина волны уменьшается почти в два раза.

Так или иначе, но возможность объяснения явления дисперсии была работами Коши установлена, и его теория качественно объясняла, почему показатель преломления увеличивается при уменьшении длины волны. Коши, а вслед за ним и Буссинеск, уточнивший его теорию дисперсии, представляли зависимость v от λ в виде: , где и b зависят от свойств среды.

Впоследствии (1862—1872 гг.) было, однако, открыто и исследовано явление «аномальной дисперсии», которое никак нельзя было объяснить теорией Коши *). Оказалось, что вблизи частот, на которых вещество сильно поглощает свет, его показатель преломления зависит от длины волны очень сильно. Может даже наблюдаться уменьшение n (λ) с уменьшением λ — отсюда и термин «аномальная», т. е. необычная дисперсия.

*) См. книгу: Тарасов Л. В., Тарасова А. Н. Беседы о преломлении света. — М.: Наука, 1982. — Библиотечка «Квант», вып. 18.

Явление аномальной дисперсии было открыто французским физиком Франсуа Ле Ру (1832—1907), наблюдавшим преломление и поглощение света призмой, наполненной парами йода. Сначала он не заметил, что синяя и фиолетовая полосы идут в неправильном порядке, и лишь через два года, в 1862 г., обратил на это внимание. Серьезное исследование аномальной дисперсии началось лишь десять лет спустя.

Замечательно простое объяснение аномальной дисперсии предложил немецкий физик В. Зельмейер (1871 г.). Он предположил, что в молекулах вещества возможны «внутренние» колебания с собственной частотой ωе — «молекулярный маятник» *) и что поглощение происходит вследствие резонансного возбуждения этих колебаний, т. е. когда частота падающего света ω близка к частоте колебаний молекул. Отсюда Зельмейер нашел аномальную зависимость показателя преломления от частоты при частоте, близкой к ωе.

Теория Зельмейера, описывающая взаимодействие волн с «резонирующей» средой, была разработана более полно и уточнена в работах Кельвина, Гельмгольца, Лоренца, Друде и других. Кельвин предложил простую модель распространения света в веществе. Он предположил, что к тяжелым грузикам ньютоновой модели (рис. 5.1) прикреплены упругими пружинками очень легкие грузики. Тогда поглощение и дисперсия света определяются взаимодействием световой волны с этими легкими грузиками. Лоренц и Друде поняли, что их надо отождествить со связанными электронами, и разработали довольно убедительную теорию поглощения и дисперсии, объясняющую основные опытные факты.

В заключение этой короткой экскурсии в оптику надо отметить, что точное описание дисперсии в действительности требует применения квантовой теории. Это было сделано в первой половине нашего века, но основная идея объяснения этого любопытного и важного явления родилась, как мы видели, очень давно. Обо всей этой истории можно было бы написать увлекательную повесть, но нас давно ждут солитоны.

*) Двумя годами ранее подобную модель рассмотрел Максвелл, который не опубликовал свои результаты.

Дисперсия волн на воде

Вода примером служит нам, примером...

В. Мюллер

Дисперсия играет огромную роль в жизни солитонов. Поэтому нам нужно познакомиться и с другими ее видами. Особенно ярко проявляются зависимость скорости распространения волн от их длины для волн на поверхности воды. Это было известно уже Ньютону. Теорема 37 третьей книги «Начал» гласит: «Скорость волн пропорциональна корню квадратному из длины их». После этого Ньютон в задаче 10 вычисляет скорость волны, сопоставляя вертикальным колебаниям частиц воды качания маятника с длиной l = ¼λ. За время одного качания Т волна сдвигается на расстояние λ, откуда v = (λ/Т) = . Хотя это лишь приближенное соотношение, приближение получилось довольно неплохое. Правильное выражение с учетом кругового движения частиц воды есть v = . Сразу заметим, что с такой скоростью распространяются волны лишь на «глубокой воде», когда глубина h много больше длины волны. В противоположном предельном случае «мелкой воды», когда h  λ, скорость волны зависит лишь от глубины: v = .

С точностью до числовых множителей эти формулы можно получить из соображений размерности и простых физических представлений о природе распространения волны. Скорость v может зависеть от g, λ, h, а также от плотности жидкости ρ и от амплитуды волны. Так как размерность массы содержится только в ρ, то сразу ясно, что скорость не зависит от плотности. (Это можно также понять, просто вспомнив, что возвращающая сила, действующая на частичку воды, пропорциональна ее массе. В уравнении движения Ньютона эта масса сокращается, как и в случае маятника.)

Простейшие наблюдения указывают на то, что скорость не зависит от амплитуды. Положив поэтому v = dgαλbhc и сравнивая размерности левой и правой частей, находим

v = d (h/λ)c.

Здесь показатель с и число d соображениями размерности не определяются. Однако мы знаем, что при распространении колебаний в движение вовлекаются лишь слои воды, расположенные на глубине, меньшей длины волны (амплитуду считаем малой). Это значит, что при достаточно большом расстоянии h от поверхности до дна величина h не играет никакой роли, т. е. надо положить с = 0. В противоположном предельном случае, когда h λ, скорость не должна зависеть от длины волны λ, так как размеры траекторий совершающих колебания частиц воды не могут превышать h (сравните с длинной волной в цепочке атомов). Мы заключаем, что для мелкой воды надо взять с = ½.

В точной теории можно получить формулу, пригодную при любом соотношении между h и λ. Из нее следует, что при возрастании длины волны скорость сначала растет, но при λ  2πh этот рост замедляется и скорость приближается к максимальному, или «критическому» значению vк = . Полезно познакомиться с приближенными выражениями для скорости в пределе коротких и длинных волн



Зависимость скорости от длины волны для длинных волн на мелкой воде удивительно напоминает соотношение между v и λ для длинных волн в решетке атомов. Действительно, воспользовавшись тем, что при малых α можно приближенно положить sin α ααЗ/6, легко получить приближение для соотношения (5.17) при λ α:



Отсюда ясно, что дисперсия волн на мелкой воде такая же, как для волн в решетке атомов, причем, глубина h играет роль расстояния между атомами.

Термин «мелкая вода» весьма условен. Для длинных волн, возникающих при землетрясениях в океане, средняя глубина океана (около 5 км) уже оказывается достаточно малой, можно сказать, что для них океан мелкий. Такие волны, известные под названием «цунами», можно считать весьма типичными и чрезвычайно опасными солитонами. Мы познакомимся с ними в следующей части, а сейчас только отметим, что диапазон реально наблюдаемых скоростей волн очень велик. В океане при длине волны  5 км это v = 800 км/ч. В кювете для обработки фотографий при глубине 0,5 см — примерно 20 см/с. Такую скорость легко измерить, достаточно резко толкнуть кювету, чтобы по ней побежало микроцунами. Легко создать и условия, при которых нужно пользоваться «глубоководной» формулой для скорости. Любознательный читатель может проделать множество несложных опытов, запасясь секундомером и терпением. При проверке «глубоководной» формулы необходимо учесть, что при малых (меньше 5 см) длинах волн начинают сказываться силы поверхностного натяжения, которыми мы до сих пор пренебрегали.

Чтобы понять роль поверхностного натяжения, предположим, что влиянием силы тяжести можно пренебречь. Тогда возвращающая сила определяется только поверхностным натяжением. Какой будет скорость таких волн? Обратимся к испытанному средству — размерностям. Поверхностное натяжение определяют энергией, которую нужно затратить для увеличения площади поверхности на единицу. Эту величину обозначают буквой Т (от англ. tension — натяжение). Для чистой воды Т 0,072 Дж/м2. Кроме величины Т длина волны может зависеть от плотности ρ и от длины волны λ. Амплитуду будем считать столь малой, а глубину столь большой, что зависимостью скорости от этих величин можно пренебречь. Действуя по обычной схеме, находим, что v2 = 2πТ/ρλ. Коэффициент 2π размерностями, конечно, не определяется, мы его взяли из точной теории, разработанной Кельвином (1871 г.). Волны поверхностного натяжения, или капиллярные волны (напомним, что натяжение вызывает подъем жидкостей по капиллярам), бегут быстрее при меньшей длине волны. Иными словами, если воспользоваться оптической терминологией, их дисперсия аномальна.

Наличие поверхностного натяжения приводит, как показал Кельвин, к очень интересному следствию — волны на глубокой воде не могут распространяться с очень малой скоростью, иными словами, существует нижняя граница для v (λ). Это можно понять с помощью довольно простых рассуждений. Легко подметить, что квадрат скорости волны пропорционален возвращающей силе (коэффициенту упругости k для пружин, натяжению F для струны и т. д.).

Если на частичку воды действуют одновременно две возвращающие силы — тяжести и поверхностного натяжения, то надо просто сложить их.



При этом скорость волны с учетом обеих сил определяется выражением



График зависимости v от λ изображен на рис. 5.8. Скорость v(λ) минимальна, когда сила тяжести уравновешивается поверхностным натяжением, т. е. когда оба слагаемых в написанном выражении для v2 равны. Из этого условия находим λмин = 2π для чистой воды λмин 17 мм. При λ  =  λмин  скорость равна vмин =  23 см/с. Формулу v2(λ) можно переписать в более приятной для глаза и удобной для вычислений форме



Капиллярные волны в виде мелкой ряби на поверхности воды хорошо всем знакомы. Их можно наблюдать в тазу, наполненном водой, пуская с небольшой высоты капли воды из пипетки. При увеличении высоты длина волны возникающих волн увеличивается. Можно убедиться, что короткие волны чисто капиллярные, а длинные — нет. Для этого добавьте в воду немного мыла. Поверхностное натяжение уменьшится, а с ним уменьшится и скорость коротких волн. Скорость же длинных волн останется прежней.

С какой скоростью бежит стая волн

В опытах наблюдаются, конечно, не бесконечные синусоидальные волны, а группы или, как сказал бы Рассел, стайки волн. Первые систематические наблюдения групп волн и были сделаны Pacceлом. Он заметил, что скорость перемещения стайки в целом меньше, чем скорость отдельных волн. При наблюдении кажется, что волны продвигаются сквозь группу, как бы исчезая на передней ее границе. Это явление объяснил в 1876 г. Стокс, который и ввел понятие групповой скорости *). Год спустя к этой проблеме вернулся Рэлей. Он нашел, как групповая скорость зависит от дисперсии, и получил формулу, которую мы сейчас выведем.

*) Впервые это понятие для волн в дискретной решетке ввел Гамильтон, рассказавший о своей работе на заседании Ирландской академии в 1839 г. и опубликовавший два кратких сообщения. В его бумагах, найденных и опубликованных 100 лет спустя, содержалась очень подробно разработанная теория групповой скорости таких волн.

Мы воспроизведем в упрощенном виде рассуждения Рэлея, приведенные в его книге «Теория звука», первой и одной из лучших книг по общей теории колебаний и волн **). Сначала предельно упростим задачу и рассмотрим две волны одинаковой амплитуды, но слегка различной длины, распространяющиеся в одном и том же направлении. Рэлей, естественно, рассматривает синусоидальные волны, а мы для наглядности заменим синусоиды пилообразными волнами. Сумма двух таких волн легко определяется графически, как это сделано на рис. 5.9. Мы видим довольно четко выраженную стайку волн с вершиной А. Если обе волны, из которых образована эта стайка, распространяются с одной и той же скоростью, то вершина, разумеется, бежит с той же скоростью. Предположим теперь, что волны разной длины бегут с разной скоростью, т. е. имеется дисперсия. Пусть, например, v1v1) v2v2). Что мы увидим в этом случае? Нарисуем графики движения первой и второй волн (рис. 5.10). Нетрудно понять, что в момент t0 мы снова увидим стайку волн первоначальной формы, но с вершиной в точке x0. Как видно на рисунке, АВ = λ1, ВC = v1t0, откуда v1t0 - x0 = λ1. Назовем u = x0/t0 групповой скоростью и заметим, что (λ2 - λ1)/t0 = v2 - v1 (это тоже ясно видно, из рисунка).

**) Современники Рэлея не сумели вполне оценить, что с появлением этой книги зародилось общее учение о колебаниях и волнах. Даже Гельмгольц, которому книга очень понравилась, считал, что это просто очень хорошая книга по акустике.



Учитывая, что разности длин волн, Δλ = λ2 - λ1, и разности скоростей, Δv = v2 - v1, малы, легко понять, что



где мы заменили v1 и λ1 на среднюю скорость v = ½(v1 + v2) и среднюю длину волны λ = ½(λ1 + λ2). Это и есть соотношение Рэлея, связывающее групповую скорость со скоростью гармонической волны (последнюю обычно называют фазовой скоростью). Смысл этой простой формулы состоит в том, что скорость группы, в которой средняя длина волн входящих в нее гармоник близка к λ, определяется производной фазовой скорости v(λ) по λ при значении λ, равном средней длине волны группы.

Групповую скорость легко определять по графику функции v(λ) (рис. 5.8). Пусть средняя длина волны группы равна λ2. Проведем из точки O2 касательную до пересечения с осью у. Точка пересечения и дает групповую скорость, которая в этом случае меньше фазовой. Упражнение: докажите, что при λ λмин из формул (5.22) и (5.23) следует, что u v/2. Попробуйте проверить это соотношение наблюдениями. Точно такое построение можно выполнить и для длин волн, меньших λмин. При λ = λмин фазовая и групповая скорости, как видно из рисунка, совпадают.

Нетрудно убедиться, что для изученных нами волн на воде групповая скорость u всегда положительна, т. е. группы бегут в ту же сторону, что и волны. Однако если наклон графика v(λ) достаточно большой, то групповая скорость могла бы стать отрицательной. В этом нет ничего сверхъестественного или парадоксального. Просто основная волна длины λ (в радиотехнике ее называют несущей) бежит направо, а вершина огибающей ее кривой, обозначенной на рис. 5.9 штриховой линией (в радиотехнике ее называют модулирующей), бежит налево. Это произойдет, если при λ = λ2 будет выполнено условие tg α v2)/λ2 (см. ΔO2O'2u2) на рис. 5.8). Так как tg α = v'(λ2), то заключаем, что групповая скорость отрицательна, если группа образована волнами со средней длиной, удовлетворяющей условию v'(λ)  v (λ)/λ.

Для длинных гравитационных волн на воде все это мог бы понять еще Ньютон, но реально понадобилось двести лет, чтобы выяснить, как много содержит в себе простое утверждение «скорость волн пропорциональна корню квадратному из их длин». Ньютон, считавший свет потоком частиц, не мог связать изученную им дисперсию света с зависимостью скорости волн на воде от их длины. Лишь через полтораста лет эта связь была замечена, и только к концу прошлого века стало окончательно ясно, что дисперсия, как и другие волновые явления (интерференция, дифракция), проявляется в любых волновых процессах. Понятие о дисперсии и групповой скорости получило после этого многочисленные применения в других областях физики — в оптике, радиофизике, квантовой теории и т. д. Тем не менее реальное использование понятия о групповой скорости и сегодня может вызвать трудности. 

Очень ясно и как всегда образно сказал о тонкости понятия групповой скорости Л. И. Мандельштам в курсе лекций 1944 г., который он уже не смог закончить. «Скорость — понятие, возникшее при описании движения частицы. Оно является совершенно ясным и имеет смысл при том условии, что существует возможность отождествления частицы, т. е. в любой точке пространства мы можем утверждать, что это та же самая частица. При распространении волны мы имеем дело с перемещением не частицы, а состояния. Чтобы говорить о скорости, нужно иметь возможность и средства для отождествления состояния. В среде без дисперсии... всякое возмущение распространяется без изменения формы, поэтому возможность отождествления здесь очевидна. Но в среде с дисперсией возмущение по мере распространения деформируется, и здесь уже нельзя без дальнейшего обсуждения сказать, чему равна скорость. Нужно сначала определить, что мы в каждом таком случае будем называть скоростью распространения. Например, для движения облака нет однозначного понятия скорости. Это может быть и скорость края облака. Примерно так же обстоит дело и со скоростью возмущения.

То, что было найдено нами, относится к скорости распространения «переменной амплитуды», и эта скорость (групповая) имеет смысл только при условии неизменности группы при ее перемещении. В диспергирующей среде такой неизменности нет *), но при выполнении условий, о которых мы говорили (достаточно медленное изменение амплитуды, т. е. малое ее изменение на длине волны, и достаточно пологий ход дисперсии), деформация группы также происходит медленно, и тогда для не слишком больших расстояний понятие групповой скорости приближенно описывает распространение группы. Во всяком случае всегда, когда есть дисперсия, понятие скорости теряет однозначность. Можно по-разному определить скорость, и одно из определений... это — групповая скорость».

*) Здесь Мандельштам подразумевает, что группа изолирована от других, вроде солитона. Последовательности групп, рассмотренные нами (по Рэлею), сохраняют свою форму.

При определении скорости отдельного свободно бегущего солитона никакой неоднозначности нет. Солитон — не облако! Солитон, в отличие от группы волн в диспергирующей среде, сохраняет форму, и его скорость можно определить точно так же, как скорость обычной частицы (пока он не сталкивается с другими солитонами или с препятствиями). Что же происходит с гармониками, на которые можно разложить солитон? О таком разложении можно говорить лишь приближенно, пока нелинейность, приводящая к взаимодействию между гармониками, достаточно мала. Если при этом мала и дисперсия, то может случиться, что энергия «перекачивается» от гармоник, бегущих с большей скоростью, к более медленным гармоникам. Если такая перекачка уравновешивает деформацию, вызванную дисперсией, то может возникнуть солитон. Примерно так можно представлять себе солитон Рассела и некоторые другие солитоны.

Сколько энергии в волне

Прежде чем окончательно заняться солитонами, мы должны ответить на еще один вопрос. Что такое энергия волн и что с ней происходит при распространении волн или групп волн? Как находить энергию волны, легко понять на модели грузиков и пружин. Энергия складывается из кинетической энергии грузиков и потенциальной энергии пружин. Для каждой заданной волны эту энергию нетрудно вычислить. Если речь идет о периодической волне, то энергией ее естественно называть полную энергию, сосредоточенную на одном ее периоде, т. е. для синусоидальной волны на ее длине. Энергия волнового импульса, энергия ограниченной группы волн или энергия солитона определяется как энергия возбужденной части среды. В этом случае предполагается, что возбуждение быстро убывает на больших расстояниях от «центра» импульса или группы, так что полная энергия конечна (не обращается в бесконечность).

Вычислим для примера энергию длинной волны в пружинной модели Ньютона (рис. 5.1). Она составлена из кинетической энергии грузика Т и потенциальной энергии пружин U, которые легко вычислить. Кинетическая энергия n-го грузика равна . Если по цепочке бежит волна с амплитудой А и длиной λ, то



Энергия, приходящаяся на длину волны, не зависит от момента, в который мы ее вычисляем. Вычислим поэтому энергию в момент t = 0. Так как λ α, то можно положить λ, = Nα, где N — большое целое число. Тогда кинетическая энергия n-го грузика равна



а энергия N грузиков, приходящихся на длину λ, равна сумме этих энергий. Сумму легко вычислить, вспомнив формулу для косинуса двойного угла, из которой следует, что 2cos2(2πn/N) = 1 + соs(4πn/N). Так как сумма членов соs(4πn/N) равна нулю (докажите!), то для кинетической энергии находим



где ρ1 = m/α — линейная плотность цепочки.

Точно так же можно вычислить сумму потенциальных энергий пружин k (yn+1 - yn)2/2, хотя вычисление немного сложнее. Оставив это вычисление читателю в качестве упражнения, заметим, что результат получится очень простой: потенциальная энергия U равна кинетической. Это верно для всех бегущих синусоидальных волн, в которых частицы среды качаются как линейные маятники. На самом деле для бегущей синусоидальной волны можно доказать и большее: кинетическая и потенциальная энергии равны не только в среднем *), но и для каждого отдельного грузика в каждый момент времени. Для дискретной модели это верно приближенно, при достаточно большом значении N = λ. В непрерывном пределе это утверждение становится точным.

*) Имеется в виду усреднение по времени (за период) или по длине (на длине волны). Для бегущей волны эти средние равны.

В нормальных модах стоячей волны кинетическая и потенциальная энергии всей системы равны только в среднем по времени. Это можно проверить, воспользовавшись найденным нами раньше решением (5.7) (вспомните, что 2cos2(2ωMt) = 1 + соs(2ωMt), а среднее значение cos(2ωMt) за период равно нулю). В остальном энергия стоячей волны определяется точно так же, как и энергия бегущей волны. Разумеется, можно определить энергию периодических бегущих и стоячих волн произвольной формы, хотя простыми формулами этого не опишешь.

Полезно представить себе, как выглядит выражение для энергии волны в «непрерывном» пределе, когда из цепочки грузиков получается упругий стержень. Полная энергия волны в малом кусочке стержня длины Δх равна



Здесь первый член соответствует кинетической энергии грузика, а второй — потенциальной энергии пружинок. Суммируя вклады малых кусочков, можно найти полную энергию куска волны, группы волн или солитона. Если на частицы действует какая-то внешняя сила (электрическое поле, поле силы тяжести и т. д.), нужно добавить к ΔЕ соответствующую величину потенциальной энергии.

Как видим, энергия, запасенная в волне, определяется просто. Сложнее обстоит дело с переносом энергии волной, и об этой проблеме долго не утихали споры, отголоски которых докатились и до наших дней. Первое ясное решение задачи о переносе энергии в упругих средах дал Н. А. Умов в 1874 г. Однако его работа была опубликована отдельной брошюрой в Одессе и долгие годы оставалась незамеченной. Независимо от Умова английский физик Осборн Рейнольдс (1842—1912), наиболее известный своими работами по гидродинамике, рассмотрел под влиянием Рэлея вопрос о том, как переносится энергия волнами в жидкости (1877 г.). Он связал перенос энергии с давлением бегущей волны, вычислил это давление и показал, что энергия распространяется не с фазовой скоростью, а с групповой. Эта мысль была подхвачена Джоном Пойнтингом (1852—1914), который нашел уравнения переноса энергий электромагнитного поля. Из них, в частности, следовало, что электромагнитная волна также должна оказывать давление. Многим, в том числе и знаменитому Кельвину, показалось, что это доказывает несостоятельность теории Максвелла. Все разъяснилось лишь после опытов Лебедева. Для нас, знающих, что свет состоит из фотонов, представление о переносе энергии электромагнитным полем и о световом давлении кажется самоочевидным. Однако на языке теории волн, распространяющихся в среде, все выглядело сложнее, так как понятие об энергии, как и понятие о скорости, тоже заимствовано из теории частиц.

В последней лекции Л. И. Мандельштама, прочитанной за месяц до смерти, подробно разбирается и этот вопрос. Природа затруднения связана с тем, что рассматривается бесконечная синусоидальная волна, которую «можно представить моделью, состоящей из набора одинаковых, не связанных друг с другом маятников (Рейнольдс). В этой цепочке маятников можно создать такую последовательность фаз, что форма колебаний будет в точности соответствовать бегущей синусоидальной волне, однако никакой передачи энергии здесь не происходит. В произвольном объеме, через который проходит синусоидальная волна, энергия будет оставаться все время постоянной». Затруднение исчезает, если вспомнить, что всякая физическая волна не бесконечна в пространстве, а представляет собой группу волн. Любая такая группа переносит энергию, и скорость распространения энергии, очевидно, равна групповой скорости *). Эффектным следствием этого является возможность движения энергии и фазы волны в противоположные стороны при отрицательной групповой скорости. Ничего парадоксального в этом нет, просто фазовая скорость еще ничего не говорит о потоке энергии.

*) По этой причине Гамильтон называл групповую скорость «скоростью, которой свет побеждает тьму».

В случае свободно бегущего солитона вообще нет никакой проблемы с энергией. Солитон ведет себя как частица, и его энергия всегда при нем.



В этом он подобен группе волн, однако, чтобы в дальнейшем не было недоразумений еще раз напомним, что сходство это чисто внешнее. Рассмотрим два импульса, бегущих навстречу друг другу по струне Д'Аламбера. В момент t = 0 они расположены в точках -x0 и х0 (рис. 5.11). Через время t = х0/v они сольются в точке О, причем форма суммарного импульса определяется простым сложением функций, описывающих каждый импульс. В момент t2 = 2х0/v они поменялись местами и бегут в разные стороны.

На первый взгляд это столкновение двух импульсов похоже на столкновение солитонов. Однако, в отличие от солитонов, импульсы действительно свободно прошли друг через друга, никак не взаимодействуя. Каждый импульс движется так, как если бы другого просто не было. Кроме того, форма этих импульсов может быть любой, а скорость всегда одна и та же и равна скорости распространения волны по струне. Наоборот, скорость солитонов может быть более или менее произвольной, но форма его вполне определенная. Она может зависеть, а может и не зависеть от скорости, но подбирается солитоном как бы «самостоятельно», тогда как форма импульса в струне полностью определяется начальным возбуждением (щипком, ударом). Наконец, и это самое главное, обычный импульс может существовать только в идеальной струне. Малейшая дисперсия постепенно «размоет» его, нелинейность исказит его форму до неузнаваемости, не говоря уже о «стирающем влиянии» трения. Солитоны же существуют благодаря нелинейности, приспосабливаются к дисперсии и остаются солитонами даже под действием трения, только постепенно «ослабевают» и «умирают». Сколь же удивительны те солитоны, которые не может разрушить даже сила трения! Этим стойким солитонам и посвящается следующая глава.

ЧАСТЬ 3