3) Общий случай. Рамка вкладышей — это большой прямоугольник размером 44x24 см. Ее можно сравнить с шахматной доской, где перемещаемые фигурки создают самые разные комбинации.
Понимание теоремы строится на нескольких уже освоенных принципах. Во-первых, два четырехугольника с одинаковым основанием и высотой равны по площади. Во-вторых, две фигуры, равные по площади третьей, равны по площади между собой.
Квадрат гипотенузы в данном материале разделен на два прямоугольника. Разделительная линия начинается в той точке, куда падает высота треугольника, опущенная из противолежащего угла. Кроме того, среди вкладышей есть два ромбоида. У одного сторона равна стороне квадрата большего катета, у второго — стороне квадрата меньшего катета. И у каждого ромбоида вторая сторона равна стороне квадрата гипотенузы. Меньшая высота этих ромбоидов равна высоте прямоугольников (части квадрата гипотенузы), большая высота равна сторонам квадратов катетов. Ребенку не обязательно заранее знать все эти соотношения величин. Он видит фигуры-вкладыши, красные и желтые, и просто перекладывает их, размещая в ячейках рамки. Кроме ячеек треугольной и квадратной формы (3 квадрата у каждой стороны треугольника) на той же рамке есть прямоугольные углубления для понимания соотношения высот и сторон ромбоидов. Материальное размещение подвижных фигурок на белом пространстве дает ученику возможность понять суть теоремы. Это не абстрактное заучивание соотношения величин, а простое и очень интересное упражнение.
Тот же материал может быть использован и для других целей.
Возьмем вкладыши для изучения теоремы Пифагора, уже размещенные на рамке. Сначала снимем два прямоугольника (части квадрата гипотенузы) и положим их в прямоугольные углубления. Опустив треугольник, положим на пустые места ромбоиды. Сначала это пространство было заполнено треугольником и двумя прямоугольниками, теперь — треугольником и двумя ромбоидами. Итак, сумма двух прямоугольников равна сумме двух ромбоидов. Теперь мы можем продемонстрировать равенство площадей ромбоидов и квадратов катетов. Опять уложим все вкладыши в исходном порядке и обратим внимание на пространство, занятое треугольником и квадратом большего катета. Для этого снимем уложенные в него фигуры и заполним другими:
– снова треугольником и большим квадратом;
– треугольником и большим ромбоидом.
То же можно проделать с пространством, заполненным треугольником и квадратом меньшего катета. Только придется взять меньший ромбоид.
Можно убедиться в равенстве площади ромбоидов и соответствующих прямоугольников и квадратов. Для этого фигуры помещаем в боковые прямоугольники на рамке и убеждаемся в равенстве высот фигур. Равенство оснований проверяется их наложением друг на друга. Следовательно, фигуры равны по площади.
Наша геометрическая система включает в себя и другие материалы, но менее значимые.
Четвертая серия вкладышей: деление треугольника.
Четыре одинаковые рамки с одинаковыми углублениями треугольной формы (равносторонними, сторона 10 см) и треугольниками-вкладышами. Один треугольник — цельная фигура. Второй — 2 равных разносторонних прямоугольных треугольника. Они получились разделением равностороннего треугольника линией высоты. Третий треугольник состоит из трех тупоугольных равнобедренных треугольников, получившихся от деления углов биссектриссами. Наконец, четвертый разделен на 4 равносторонних треугольника, подобных большому треугольнику.
Ребенок может измерять углы, научиться отличать прямой угол от острого и тупого. Измеряя все углы треугольника, ученик узнает, что сумма углов треугольника всегда составляет 180°, то есть два прямых угла. Он может заметить, что углы равностороннего треугольника равны (60°). В равнобедренном треугольнике два угла, прилегающие к основанию, равны между собой. В разностороннем треугольнике все углы разные. В прямоугольном треугольнике сумма двух острых углов равна 90°, то есть прямому углу. Ученик может самостоятельно вывести определение: треугольники подобны, если их соответствующие углы равны.
Материал для изучения вписанных и описанных фигур
Этот материал напоминает уже описанный. На белом фоне можно располагать фигуры вписанные или описанные. К примеру, в центре большого равностороннего треугольника расположим маленький красный равносторонний треугольник (четвертая часть большого). Каждая вершина маленького треугольника касается средней точки каждой стороны большого треугольника.
Еще есть квадраты разной величины. В рамках для них сделаны соответствующие белые углубления. Квадрат со стороной 7 см может быть уложен в центр квадрата со стороной 10 см так, чтобы каждая вершина касалась середины каждой стороны. То же можно сделать с квадратами со стороной 7 и 5 см, 5 и 3,5 см.
Есть еще и круги разного диаметра. Их можно накладывать друг на друга, накладывать на них треугольники. Круг с диаметром 10 см вписывается в квадрат со стороной 10 см.
Все эти соотношения делают разноцветные вкладыши чрезвычайно удобными для рисования различных красивых сочетаний.
В этот материал мы включили и звезды, которые обычно служат для декоративного рисования, и цветы, образованные пересечением кругов и полукружий.
Беглое изложение перспектив развития геометрических знаний
Приходит момент, когда дети с удовольствием и знанием дела вычисляют площади правильных геометрических фигур. К этому их подготовили упражнения с бусинами, с квадратами и кубами чисел. Теперь им нетрудно научиться высчитывать объем геометрического тела. Тем более полезно после упражнений с кубом чисел (при помощи бусин) узнать, что произведение площади основания на высоту равно объему призмы.
Материал состоит из трех геометрических тел: призмы, пирамиды (ее основание и высота равны основанию и высоте призмы) и призмы, чье основание равно основанию пирамиды, а высота втрое меньше. Фигуры полые. Призмы закрыты крышкой и являются, по существу, коробочками. У пирамиды нет крышки снизу, с ее помощью можно набирать и перекладывать разные субстанции. Мы наполняем тела разными субстанциями (песок или зерна проса) так, чтобы заполнить их целиком и чтобы содержимое оставалось всегда в том же количестве. Это нелегко. Часто вещество насыпают не доверху, получается меньший объем, чем присущ телу на самом деле. Нужно научиться заполнять пустоту так же, как нужно научиться укладывать вещи максимально компактно. Покачивать тело, чтобы утрясти содержимое, разглаживать и приминать поверхность — детям это очень нравится.
Тело можно наполнить и жидкостью. В этом случае придется научиться переливать жидкость, не теряя первоначального объема, не проливая ни капли.
Это техническая подготовка к измерительной процедуре. Ученики узнают, что объем пирамиды равен объему маленькой призмы, то есть трети объема большой призмы. Следовательно, объем пирамиды равен произведению площади основания на треть высоты.
Наполнив глиной маленькую призму, мы получим достаточный объем, чтобы заполнить пирамиду. Из этой глины можно сделать два тела, равные по объему, по форме совпадающие с телами нашего материала. Пять равных частей глины, достаточных, чтобы заполнить маленькую призму, станут материалом для пяти тел.
Из этой идеи вытекают все остальные действия: объяснения почти не нужны. Часто исследования возникают как следствие детских вопросов.
– Как найти площадь круга?
– Как найти объем цилиндра?
– А конуса?
Вычисление площади поверхности тела — прекрасная задача для ребенка. Иногда ребенок спонтанно находит ответ. Материал для этого такой: деревянные геометрические тела, у которых основное измерение — 10 см:
– четырехугольный параллелепипед (10, 10, 20 см);
– четырехугольный параллелепипед, равный трети первого;
– четырехугольная пирамида (10,10, 20 см);
– треугольная призма (10, 20 см);
– треугольная призма, равная трети предыдущей;
– пирамида (10, 20 см);
– цилиндр (диаметр 10 см, высота 20 см);
– цилиндр, втрое меньше предыдущего;
– конус (диаметр 10 см, высота 20 см);
– сфера (ось 10 см);
– овал (большая ось 10 см);
– эллипсоид (большая ось 10 см).
А также тетраэдр, гексаэдр (куб), октаэдр, додекаэдр, икосаэдр. Эти тела раскрашены в разные цвета.
Сила чисел
Материал: два равных куба с ребром 2 см, призма вдвое больше куба, призма вдвое больше предыдущей, 7 кубов с ребром 4 см. Два кубика, рядом стоящие, — 2. Два кубика и призма вдвое больше куба — 22. Все то же и самая большая призма -23. Два кубика с гранью 4 см — 24
Добавить к ним еще 2 кубика — 25.
Добавить к ним еще 4 кубика — 26.
Итак, 23, 26 — фигуры располагаются в форме куба.
22, 25 — фигуры располагаются в форме квадрата.
2, 24 — фигуры располагаются в одну линию.
(а + b)3 = a3 + b3 + За2b + 3b2a
Материал: куб (ребро 6 см), куб (ребро 4 см), 3 призмы с квадратным основанием (сторона 4 см, высота 6 см), 3 призмы с квадратным основанием (сторона 6 см, высота 4 см).
Вес и размер
В распоряжении детей всегда есть много предметов для взвешивания и измерения. Например, еще в Доме ребенка ученики пользовались счетными штангами для измерения длины. Эта система имела свой метр и более мелкие деления, дециметры. Сейчас в распоряжении младших школьников десятиметровая лента, которой можно измерить пол, а значит, вычислить его площадь. Есть метровые измерители в разных формах (линейка, металлическая лента, швейный сантиметр и штанга торговца). Дети измеряют всем подряд и все подряд, с удовольствием высчитывают площади нарисованных геом