стского объекта). Из-за огромного гравитационного потенциала вблизи релятивистского объекта скорости движения вещества во внутренних частях аккреционного диска достигают гигантских значений, порядка скорости света. Взаимное трение газовых потоков и их столкновения приводят к разогреву плазмы до температур в десятки миллионов градусов и огромному выделению энергии в виде квантов рентгеновского излучения. Поэтому рентгеновская двойная система видна как мощный источник рентгеновского излучения. Если релятивистский объект – быстро вращающаяся нейтронная звезда с сильным магнитным полем, в рентгеновской двойной системе может наблюдаться феномен рентгеновского пульсара.
На это впервые обратили внимание азербайджанские астрономы П. Амнуэль и О. Гусейнов. В этом случае мощное рентгеновское излучение строго промодулировано периодом вращения нейтронной звезды. Если же в рентгеновской двойной системе имеется черная дыра, феномена рентгеновского пульсара не должно наблюдаться ввиду того, что черная дыра обладает лишь горизонтом событий и не имеет твердой наблюдаемой поверхности с «привязанным» к ней магнитным полем. От аккрецирующей черной дыры могут наблюдаться лишь хаотические изменения рентгеновского излучения на временах вплоть до 10-3 секунды. Кроме того, от аккрецирующей черной дыры могут наблюдаться квазипериодические (но не строго периодические) осцилляции рентгеновского излучения. Большинство описанных особенностей аккрецирующих нейтронных звезд и черных дыр были предсказаны и описаны в знаменитых работах академика Я. Б. Зельдовича и его учеников в конце 1960‑х и начале 1970‑х годов, до начала эры систематических рентгеновских наблюдений неба. И все эти теоретические предсказания блестяще подтвердились наблюдениями. Благодаря этим теоретическим предсказаниям природа компактных рентгеновских источников была быстро понята, и был сделан вывод об открытии рентгеновских двойных систем. За эти открытия руководитель рентгеновского космического эксперимента Uhuru профессор Риккардо Джиаккони в 2002 году был удостоен Нобелевской премии. Тематика, посвященная черным дырам, нейтронным звездам, аккреции, рентгеновским двойным системам, активно обсуждалась на Объединенном астрофизическом семинаре. Мы, молодые сотрудники ГАИШ, регулярно посещали этот знаменитый семинар, что позволяло нам быть в курсе всех новейших данных.
На меня особое впечатление произвела работа Я. Б. Зельдовича, опубликованная в 1964 году в Докладах АН СССР, об аккреции вещества на черную дыру. Здесь было показано, что несферическая аккреция вещества на черную дыру может приводить к гигантскому выделению энергии. В работе И. Д. Новикова и Я. Б. Зельдовича, вышедшей в 1966 году, было предсказано мощное выделение энергии в виде рентгеновского излучения при несферической аккреции вещества на релятивистские объекты. В 1966 году Я. Б. Зельдович и О. Х. Гусейнов опубликовали список тесных двойных систем, которые, возможно, содержат черные дыры. Здесь же было отмечено, что, изучая движение оптической звезды в двойной системе с невидимым спутником, можно оценить массу этого спутника. Меня эти работы очень взволновали – стало ясно, что черные дыры, несмотря на то что они «черные», можно реально наблюдать в рентгеновском диапазоне спектра, а по движению оптической звезды в двойной системе можно определять их массы и тем самым отличать черные дыры от нейтронных звезд. Как известно, под черной дырой понимается область пространства-времени, гравитационное поле которой столь сильно, что никакой сигнал, даже свет, не может вырваться из нее на пространственную бесконечность. Согласно современным представлениям, если масса ядра звезды, претерпевшего термоядерные превращения, превышает три солнечные массы, то в конце эволюции звезды образуется черная дыра. Если же масса этого ядра менее трех солнечных, то в конце эволюции такой звезды образуется нейтронная звезда или белый карлик. Поэтому возможность «взвешивать» релятивистские объекты превращает тесные двойные системы в мощный инструмент исследования принципиально новых объектов во Вселенной – черных дыр. Для меня, специалиста по физике тесных двойных систем с пекулярными компонентами, это был настоящий подарок судьбы. Важно было не упустить выпавший на мою долю шанс. И я этот уникальный шанс включиться в работы по релятивистской астрофизике постарался не упустить.
В 1969 году в «Астрономическом журнале» вышла статья Я. Б. Зельдовича и Н. И. Шакуры об аккреции вещества на одиночную нейтронную звезду без магнитного поля, в которой была дана интерпретация спектра рентгеновского излучения источника Sco X-1 – первого компактного рентгеновского источника, обнаруженного за пределами Солнечной системы. В том же 1969 году была опубликована статья Г. С. Бисноватого-Когана и А. М. Фридмана по теории аккреции вещества на замагниченную нейтронную звезду. В 1972 году вышла в свет работа Н. И. Шакуры по теории дисковой аккреции вещества в двойных системах на релятивистские объекты. В 1973 году появилась ныне знаменитая статья Н. И. Шакуры и Р. А. Сюняева по теории аккреционных α-дисков. В 1972 году английские астрономы Дж. Прингл и М. Рис опубликовали статью о дисковой аккреции вещества на релятивистский объект. В 1973 году И. Д. Новиков и К. Торн (США) построили теорию дисковой аккреции вещества на релятивистский объект с учетом эффектов Общей теории относительности (ОТО). Следует особо отметить, что еще в 1967 году И. С. Шкловский указал на рентгеновский источник Sco X-1 как на возможную аккрецирующую нейтронную звезду в двойной системе. Этот «звездопад» блестящих работ непрерывно подпитывал мой интерес к проблеме исследования рентгеновских двойных систем.
В 1972 году с борта спутника Uhuru была открыта первая затменная рентгеновская двойная система Cen X-3. Система в рентгеновском диапазоне спектра показывает строго периодические затмения П-образной формы, что свидетельствует о том, что затмеваемый объект имеет очень малые размеры по сравнению с радиусом затмевающей звезды. Период следования рентгеновских затмений составил ~ 2,1 суток, причем в середине затмений рентгеновская светимость объекта спадала почти до нуля. Рентгеновский источник в этой системе оказался рентгеновским пульсаром с периодом ~ 4,8 секунды, то есть из наблюдений прямо следовало, что рентгеновский источник в данном случае, скорее всего, является нейтронной звездой. Для определения массы рентгеновского источника в системе Cen X-3 требовалось вначале отождествить его с оптической звездой, что было весьма непросто сделать. Дело в том, что квадрат ошибок рентгеновского телескопа спутника Uhuru был весьма большим – порядка 1°. Внутри этого квадрата расположены сотни звезд, и необходимо выделить среди них одну, физически связанную с рентгеновским источником. Одним из способов решения этой трудной задачи является изучение оптической переменности звезд в квадрате ошибок. Та звезда, у которой период оптической переменности совпадает с периодом переменности рентгеновского излучения исследуемого рентгеновского источника, и может с большой вероятностью рассматриваться как оптическая компонента рентгеновской двойной системы. Изучая ее движение спектроскопическими и фотометрическими методами, можно определить массу релятивистского объекта. Прелесть двойных систем состоит в том, что именно движение оптического спутника несет основную информацию о массе рентгеновской компоненты.
В начале 1972 года в коридоре ГАИШ меня встретил Юрий Николаевич Ефремов, в дальнейшем профессор, главный научный сотрудник, лауреат Ломоносовской премии МГУ. Он сказал, что И. С. Шкловский попросил его, используя картотеку Общего каталога переменных звезд (ОКПЗ), найти в пределах квадрата ошибок системы Cen X-3 переменную звезду с периодом изменения блеска, близким к рентгеновскому периоду Cen X-3. Юрий Николаевич нашел такую звезду. Ею оказалась затменная двойная система LR Cen, орбитальный период которой с точностью до 0,4% совпадал с рентгеновским периодом системы Cen X-3. Он попросил меня, как специалиста по тесным двойным системам, определить параметры этой системы. Я с радостью согласился, и в течение нескольких дней провел анализ оптической кривой блеска системы LR Cen. Это оказалась классическая затменная двойная система типа Алголя с круговой орбитой, глубоким главным затмением и небольшим вторичным минимумом. Вне затмений наблюдались небольшие изменения блеска, обусловленные эффектами взаимной близости компонент – эффектом эллипсоидальности и эффектом отражения. Используя стандартный аппарат теории классических затменных систем, я определил радиусы компонент в долях радиуса орбиты, их относительные светимости и наклонение орбиты. Все эти параметры ничем не отличались от характеристик обычных звезд. Никаких особых аномалий я не нашел. Лишь с большой натяжкой можно было связывать высокую оптическую светимость более яркой компоненты системы с процессами аккреции вещества второй звезды на релятивистский объект. Мы честно изложили все эти результаты в нашей статье за подписью трех авторов – И. С. Шкловский, Ю. Н. Ефремов и А. М. Черепащук – и послали ее в очень авторитетный международный журнал Nature.
При этом в статье мы также отмечали, что совпадение оптического и рентгеновского периодов имеет место всего лишь с точностью до 0,4% и необходимо проверить дальнейшими наблюдениями равенство периодов с большей точностью. Журнал Nature – журнал для экспресс-информации. И если статья получает положительные отзывы рецензентов (рецензирование там очень строгое), то она быстро публикуется, в течение пары месяцев. Прождав полгода и не получив никаких известий из редакции журнала, мы, для страховки, опубликовали нашу статью в «Астрономическом циркуляре» на русском языке. Более того, И. С. Шкловский решил послать телеграмму за нашими тремя подписями в Международный центр астрономических телеграмм (это издание обозначается как IAU Circular). Телеграмма не была опубликована. И вдруг, уже в конце 1972 года, в ГАИШ приходит очередной номер Nature, в котором опубликованы две статьи по системе LR Cen: наша и еще одного, уже зарубежного автора (не буду из деликатности называть его фамилии). Поразительно то, что корректура нашей статьи (пробная версия статьи, где можно выполнять исправления опечаток) нам не присылалась. Точнее говоря, мы ее не получали (в те времена в СССР зарубежная переписка ученых строго контролировалась, и возможно, что корректура затерялась при пересечении границы). С чем была связана такая большая задержка публикации нашей статьи, остается только гадать. Но, принимая во внимание то, что наша телеграмма не была опубликована, не исключено, что эта задержка была обусловлена большой престижностью нашей публикации (первое в мире оптическое отождествление рентгеновской двойной системы) и желанием некоторых зарубежных коллег не упустить приоритет.