4 операций в секунду. Для выполнения своей дипломной работы в 1963 году я использовал компьютер (ЭВМ, как тогда его называли) «Стрела», установленный в Вычислительном центре МГУ. Этот компьютер имел 2 тысячи ячеек оперативной памяти и обладал быстродействием 2 тысячи операций в секунду. Программировать при этом приходилось в кодах. Специальные языки программирования появились позднее. ЭВМ «Стрела» занимала целое здание Вычислительного центра. Она работала на электронных лампах, которые сильно грелись. Поэтому «Стрела» работала лишь в холодное время года – примерно с октября по май. В летние месяцы «Стрела» останавливалась, и на ней велись профилактические и ремонтные работы.
Основам программирования на ЭВМ меня научил мой друг и коллега по игре на гитаре Юра Колесников, студент мехмата и известный бард (хорошо известна его замечательная песня на слова Г. Иванова «Я смотрю на Москву через призму поэзии»). Он же стимулировал мое переучивание с семиструнной гитары на шестиструнную. Как-то мы с Юрой сидели в моей комнате в общежитии МГУ и музицировали. При этом мы часто вспоминали об обеде (это было накануне получения стипендии, как правило, в этот последний день у студента нет денег на обед). И вдруг я получаю почтовое извещение о посылке. Мы немедленно пошли на почту и получили посылку с Украины. Вскрыв ее, мы обнаружили, что заботливые родственники моего отца прислали нам примерно три килограмма украинского сала и сто куриных яиц, каждое из которых было завернуто в газету (чтобы при растрескивании яйцо не вытекало). Яйца были пересыпаны подсолнечными семечками для лучшей сохранности. Тем не менее мы обнаружили, что тридцать два яйца из ста были треснутыми, и их нужно было немедленно использовать. И вот мы с Юрой растопили сало на сковородке, побросали туда эти тридцать два яйца, зажарили их и такую яичницу съели в один присест – по шестнадцать яиц на человека. После этого мне весь последующий день не хотелось есть. Я лишь покупал стакан чая и с хлебом, который тогда свободно лежал на столах в столовой МГУ, выпивал этот чай. Никаких болезненных ощущений, никакой аллергии мы тогда от такого переедания не почувствовали. Вот что значит молодость! Еще один забавный случай я вспоминаю, также в связи с проблемой питания. Опять же накануне получения стипендии, имея в кармане последние 80 копеек, я решил пообедать в кафе на берегу Москвы-реки в Лужниках. Купив на свои 80 копеек порцию котлет с макаронами и компот, я поставил все это на веранде на стол и побежал за вилкой и ложкой в другой конец зала. Прибежав назад, я увидел ужасную сцену: налетела стая воробьев и прикончила мои две котлеты. При этом макароны остались нетронутыми. Меня особенно возмутило то, что эти поганые птицы съели не макароны, а именно котлеты. Пришлось мне пообедать одними макаронами с компотом. Зато на следующий день, получив стипендию, я пошел пировать, разумеется, уже не в кафе с верандой, а в закрытое помещение. Такова была наша студенческая и аспирантская жизнь.
После этих исторических отступлений вернемся к моей аспирантской работе. В конце первого года моего обучения в аспирантуре от сотрудника ГАИШ, тогда еще кандидата физико-математических наук П. В. Щеглова (впоследствии это был профессор, главный экспериментатор ГАИШ) я узнал о том, что на кафедре оптики физического факультета МГУ (заведующий кафедрой профессор Ф. А. Королев) изготавливаются клиновидные интерференционные светофильтры. Мне удалось получить один экземпляр такого светофильтра от моей коллеги, аспирантки кафедры звездной астрономии Н. Н. Гусевой. Этот фильтр оказался очень полезным для моей научной работы. Из-за того, что интерферирующие слои в этом фильтре имеют переменную толщину, при наблюдении звездообразных объектов, перемещая фильтр поперек луча зрения, можно менять центральную длину волны пропускания фильтра и при этом выделять узкую полосу шириной ~ 50 ангстрем. Приспособив этот фильтр к электрофотометру Крымской станции ГАИШ, установленному на 48-сантиметровом рефлекторе АЗТ-14, я получил в свое распоряжение простой и очень надежный в эксплуатации спектрофотометр, с помощью которого за два летних сезона наблюдений на Крымской станции ГАИШ мне удалось построить детальные кривые блеска нескольких затменных двойных систем с компонентами – звездами Вольфа–Райе (в том числе и системы V444 Cyg). Эти кривые блеска были получены отдельно в частотах непрерывного спектра (континуума) и эмиссионных линий (в частности, линии HeII 4686). Таким образом, мне удалось впервые получить наблюдательный материал, пригодный для изучения структуры протяженной атмосферы звезды Вольфа–Райе в континууме и эмиссионных линиях.
Попутно я обнаружил новое явление в мире затменных двойных систем: селективное атмосферное затмение. Наблюдая двойную систему CV Ser, содержащую звезду Вольфа–Райе и «нормальную» звезду спектрального класса О, я нашел, что эта система имеет почти постоянный блеск в частотах континуума, а в частотах эмиссионной линии CIII-IV 4656 (бленда из двух линий двукратно и трехкратно ионизованного углерода) она является затменной переменной с большой глубиной затмения – порядка половины звездной величины. Я сразу догадался, что это связано с тем, что коэффициент поглощения в частотах линии CIII-IV 4653 много больше, чем в континууме, поэтому характерные размеры поглощающей оболочки звезды Вольфа–Райе в частотах линии много больше, чем в континууме, что и приводит к увеличению глубины атмосферного затмения в частотах линии. Я быстро опубликовал эту работу и получил на нее много откликов и ссылок. В дальнейшем эффекты селективных атмосферных затмений были обнаружены у многих затменных двойных систем. Изучение этих эффектов дает ценную информацию о структуре звездных ветров горячих звезд и об области взаимодействия ветров в тесных двойных системах. Теория селективных атмосферных затмений, основанная на применении теории движущихся оболочек звезд В. В. Соболева, была развита мной совместно с Х. Ф. Халиуллиным в 1976 году. На эту тему нами опубликована статья в «Астрономическом журнале».
Кривые блеска системы V444 Cyg, полученные мной в континууме и эмиссионных линиях, оказались сильно различающимися, что отражает сложную ионизационную структуру звездного ветра звезды Вольфа–Райе. Стало ясно, что для определения характеристик «ядра», или «собственно звезды» Вольфа–Райе, лучше всего подходят кривые блеска в континууме, а для выявления эффектов столкновения звездных ветров в системе V444 Cyg следует использовать кривые блеска в эмиссионных линиях. Следует подчеркнуть, что такая возможность изучения стратификации излучения в звездном ветре звезды Вольфа–Райе была реализована впервые в моих работах – до этого исследователями анализировались кривые блеска затменных двойных систем Вольфа–Райе в широкополосной фотометрической системе U, B, V, в которой вклад континуума и эмиссионных линий усреднялся, что не давало возможности выполнить однозначную физическую интерпретацию результатов анализа затменных кривых блеска.
По результатам узкополосных наблюдений системы V444 Cyg в 1967 году я опубликовал статью в бюллетене «Переменные звезды». В этой статье я впервые предсказал возможность формирования рентгеновского излучения при столкновении сверхзвуковых звездных ветров и оценил температуру этого излучения по формуле для сильных ударных волн: T ≈ 107 K. Это предсказание было подтверждено в дальнейшем по наблюдениям с борта орбитальной рентгеновской обсерватории «Эйнштейн» (1987). Эта работа стала первой частью моей кандидатской диссертации. Вторая часть диссертации состояла в разработке устойчивых алгоритмов решения интегральных уравнений Фредгольма 1‑го рода, описывающих кривые блеска системы V444 Cyg в континууме. Дело в том, что такие интегральные уравнения описывают некорректно поставленные задачи. Малым возмущениям наблюдательных данных (ошибкам) в данном случае соответствуют сколь угодно большие возмущения решения. Возникает парадоксальная ситуация: интегральные уравнения записаны, однако их формальное решение бессмысленно, поскольку результат решения очень неустойчив.
Мой научный руководитель, профессор Д. Я. Мартынов, когда я ему рассказал об этой трудности, немедленно отправил меня к ученикам академика Андрея Николаевича Тихонова, выдающегося математика, который как раз недавно получил Ленинскую премию за разработку научно обоснованных методов решения некорректных задач (знаменитый метод регуляризации Тихонова сейчас вошел в золотой фонд математических методов обработки наблюдательных данных). Сначала Дмитрий Яковлевич попросил Андрея Николаевича о встрече, на которой я рассказал о сути моей обратной задачи. Под обратной задачей понимается задача, когда по следствиям некоторого процесса (кривой блеска при затмении) требуется определить причины, вызывающие этот процесс (параметры и функции модели затменной двойной системы). Андрею Николаевичу задача понравилась. Особенно ему понравилась идея находить распределение яркости по диску звезды Вольфа–Райе независимо от расстояния до затменной системы. В этом смысле затменная система как бы эквивалентна сверхмощному телескопу, с помощью которого исследователь может изучать изображение диска затмевающейся звезды. Андрей Николаевич поручил двум своим ученикам, студентам старших курсов кафедры математики физического факультета МГУ (А. Н. Тихонов был заведующим этой кафедрой) А. В. Гончарскому и А. Г. Яголе, помочь мне в решении этой задачи. И с 1965 года началась наша совместная работа по применению методов регуляризации А. Н. Тихонова к решению обратных задач астрофизики. Суть этих методов состоит в том, что, как впервые отметил А. Н. Тихонов, обратная некорректная задача является физически недоопределенной и при ее решении необходимо использовать дополнительную физическую информацию о решении, априорную по отношению к процедуре решения задачи. В классическом методе регуляризации Тихонова используется априорная информация о гладкости искомой функции. В общем виде А. Н. Тихоновым выдвинуто фундаментальное понятие регуляризирующего алгоритм