Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли — страница 13 из 99

На протяжении тысячелетий было известно, что некоторые рыбы производят электричество.

В 1757 году французский исследователь Мишель Адансон пришел к выводу, что воздействие тока от пресноводного сома из Сенегала было таким же, как и от лейденской банки [15]. Десятилетием позже натуралист Эдвард Бэнкрофт показал, что ток, производимый угрем из Гайаны (на самом деле это не угорь), может передаваться через леску и оттуда на цепь из дюжины человек, «точно так же, как от электрической машины». Дальнейшие исследования скатов, вдохновленные натуралистом Джоном Уолшем и проведенные с участием физика Генри Кавендиша и анатома Джона Хантера, показали, что органы, ответственные за создание тока, – большие структуры по бокам тела, между головой и грудными плавниками – могут функционировать как серия лейденских банок.

В 1775 году Уолшу в конце концов удалось получить искру от заряда, произведенного рыбой, продемонстрировав, что она способна генерировать электричество. Предположения о том, что «животные духи» могут иметь электрическую природу, породили серьезную проблему: «духи» были явно ограничены нервами, но электричество легко протекало по всему телу. Эксперименты со скатами выявили, что электричество может содержаться в определенном органе, – может, и нервы могли бы делать что-то подобное? [16] Французский физик Пьер Бертолон пришел к выводу, что у всех животных есть «собственное электричество», производимое трением, создаваемым движениями, такими как дыхание, кровообращение и т. д. [17]. Это электричество, утверждал ученый, стимулирует мышцы через нервы и является основой всех движений.

Пьер Бертолон утверждал, что у всех животных есть «собственное электричество», которое производится трением от их движения.

Несколько лет спустя Луиджи Гальвани, врач из Болоньи, начал исследовать реакцию животных на электричество из лейденских банок, в основном изучая движение изолированных лягушачьих лапок, следуя работе Пристли и других ученых, проводивших эксперименты 30 годами ранее[54]. В 1791 году Гальвани заметил острую чувствительность нервов к электричеству, когда случайно обнаружил, что даже заряженная атмосфера, возникающая в грозовые дни, может вызывать мышечные сокращения [18]. Самым сложным открытием Гальвани было наблюдение сокращений в отсутствие какого-либо внешнего источника электрического заряда. Более ста лет назад Сваммердам показал, что если потрогать скальпелем лягушачий нерв, то прикрепленная к нему мышца сократится, и этот эффект он приписал раздражению. Гальвани наблюдал сходный феномен, но выявил, что мышца лягушки сокращается, если ее поместить на железную пластину, а затем коснуться связанных с ней нервов другим металлом, таким как серебро. Он пришел к выводу, что в нерве есть какое-то врожденное электричество, которое передается через металлы в мышцу [19]. Данный эффект не ограничивался лягушками. В мае 1792 года Гальвани присутствовал на двойной ампутации, проведенной профессором Гаспаром Джентили в больнице святой Урсулы в Болонье. Сразу же по завершении операции Гальвани взял ампутированные конечности бедного пациента и «в присутствии вышеупомянутого профессора, других врачей и ученых мужей» заставил пальцы руки двигаться, а мышцы ноги сокращаться, просто коснувшись нерва кусочком фольги, а мышцы – кусочком серебра, а затем позволив металлам контактировать друг с другом [20].

Гальвани утверждал, что эти эксперименты доказали существование «животного электричества», которое «содержится в большинстве частей организма животных, но наиболее ярко проявляется в мышцах и нервах» и, собственно, является таким же феноменом, как у электрических скатов и других подобных рыб [21]. Животное электричество, согласно Гальвани, вырабатывается корой головного мозга, а затем извлекается из крови и поступает в нервы. В некотором смысле ничего особенного не изменилось – это было похоже на более ранние представления о порождении «животных духов».

Гальвани не мог сказать, каким образом электричество в нерве заставляет мышцу сокращаться, хотя и задавался вопросом, является ли причиной испарение или раздражение. Несмотря на проблемы с пониманием того, как происходят простейшие движения, ученый был готов размышлять о самом сложном из всех вопросов – связи между разумом и движением:

«Может быть, ум с его удивительной силой мог бы послать некий импульс либо в головной мозг, во что очень легко поверить, либо за его пределы, в какой угодно нерв, вследствие чего нервно-электрическая жидкость быстро потечет от соответствующей мышцы к той части нерва, к которой был устремлен импульс» [22].


Эксперимент Гальвани на лягушачьих лапках. Человек слева генерирует заряд статического электричества, растирая шерсть овцы


В 1793 году туринский врач Эусебио Валли с энтузиазмом поддержал и дополнил утверждения Гальвани, полагая, что старые «животные духи» были заменены новой идеей животного электричества [23]. Валли понял, что если нервы функционируют на основе электричества, то, подобно электрическому органу ската, они должны иметь какое-то особое строение, отличающееся от структур других тканей: «Мозг, спинной мозг и нервы обладают специфической конституцией, и именно от нее зависит вид вырабатываемого электричества».

Несколько месяцев спустя эдинбургский врач Ричард Фаулер указал на проблему: эффект животного электричества Гальвани, казалось, проявлялся только тогда, когда ткани соприкасались с двумя различными металлами [24].

Эта критика также лежала в основе работы Алессандро Вольты[55] из Павийского университета, прояснившего, что простой контакт двух различных металлов генерирует слабый электрический заряд, который, в свою очередь, вызывает сокращение мышц лягушки. Он вкратце опроверг утверждение Гальвани об открытии врожденного электричества у животных – мышечное сокращение было просто реакцией на электрическую стимуляцию, порожденную контактом металлов [25].

Ричард Фаулер объяснил, что эффект животного электричества проявляется тогда, когда ткани соприкасаются с двумя различными металлами.

Уязвленный критикой Вольты, Гальвани вместе со своим племянником Джованни Альдини провел эксперименты, проиллюстрировавшие, что растяжения мышц можно добиться, просто позволив нерву коснуться обнаженной мышцы без участия металла. Этот результат был подтвержден двумя годами позже Александром фон Гумбольдтом[56] [26]. Вольта не был впечатлен, подчеркивая, что даже в этих случаях в процесс сокращения были вовлечены некоторые сторонние компоненты, такие как жидкости на внешней поверхности тканей [27]. Тело, утверждал ученый, оставалось совершенно пассивным, реагируя на внешний электрический стимул, который каким-то неизвестным образом порождался взаимодействием того, что он называл «гетерогенными веществами».

Рассуждения Алессандро Вольты были не так уж далеки от истины – теперь мы знаем, что результаты первоначальных биметаллических экспериментов Гальвани были вызваны различным сродством электронов у двух видов металлов, благодаря чему и генерировался электрический ток. А эксперименты Гальвани и Гумбольдта без металлов вызвали ток повреждения, при котором травмированная ткань имеет отрицательный заряд, а неповрежденная – положительный [28]. Но Гальвани был абсолютно прав, утверждая, что в телах животных присутствует некий вид электричества и что «нарушенное равновесие» лежит в основе электрического тока. Более глубокое объяснение, которое будет полностью осознано лишь спустя практически 150 лет, состояло в том, что в организме электрические заряды имеют химическую основу: нервные импульсы – электрохимические.

Не все были убеждены, что проводившиеся эксперименты что-то говорят о природе движения. В 1801 году английский физик Эразм Дарвин (дед Чарлза) писал: «Я не считаю убедительными эксперименты, недавно опубликованные Гальвани, Вольтой и другими и демонстрирующие сходство между духом жизни, что сокращает мышечные волокна, и электрической жидкостью» [29]. Вскоре Дарвин оказался в меньшинстве, поскольку новые эксперименты, казалось, решили поставленный вопрос.

Новые прозрения зиждились на поистине революционном открытии Вольты. Ученый решил сосредоточиться на одном из наиболее сильных аргументов, подверждающих, что животные обладают каким-то присущим только им электричеством, – на электрическом токе ската. Осенью 1799 года, следуя идеям английского химика и изобретателя Уильяма Николсона, Вольта начал выяснять, лежит ли повторяющаяся структура электрического органа ската в основе его способности генерировать электричество [30]. Чтобы проверить гипотезу, Вольта создал, согласно его собственному описанию, искусственный электрический орган, основанный на анатомии ската и состоящий из чередующихся дисков из цинка и меди, между которыми были проложены кусочки картона, пропитанные разбавленной кислотой. Это изобретение получило название «вольтов столб» или «свая» (pile), в честь кучи дисков, из которых оно было сделано, – термин сохранился во французском языке, но в английском мы теперь говорим «батарея»[57].

Удивительно, но данное устройство генерировало непрерывный электрический ток за счет взаимодействия составных элементов. Спор Вольты с Гальвани привел к изобретению нового источника энергии. Об этом знаменательном открытии было объявлено миру в письме Королевскому обществу, написанном в марте 1800 года и опубликованном в июне того же года [31]. Наступила эра химического электричества, и вскоре физики и химики по всей Европе начали использовать батареи в своих исследованиях, завораживая публику демонстрациями новой формы энергии, как, например, делал это Гемфри Дэви[58] на знаменитых лекциях в Лондоне. В 1812 году на одной из его эффектных демонстраций электричества присутствовала некая юная девушка. Звали ее Мэри Годвин, но она стала более известной под фамилией мужа – Шелли [32].