Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли — страница 93 из 99

Science 265:676–9.

38. Olafsdottir, H., et al. (2015), eLife 4:e06063; Stachenfeld, K., et al. (2017),Nature Neuroscience 20:1643–53.

39. Schuck, M. and Niv, Y. (2019), Science 364:eaaw5181; Liu, Y., et al. (2019), Cell 178:640–52.

40. Eichenbaum, H. (2016), Learning and Behavior 44:209–22, p. 213.

41. Lisman, J., et al. (2017), Nature Neuroscience 20:1434–47.

42. Brodt, S., et al. (2018), Science 362:1045–8.

43. Teyler, T. and DiScenna, P. (1986), Behavioral Neuroscience 100:147–54.

44. Tanaka, K., et al. (2018), Science 361:392–7.

45. Igarashi, K., et al. (2014), Nature 510:143–7.

46. Eichenbaum, H., et al. (1983), Brain 106:459–72.

47. Dahmani, L., et al. (2018), Nature Communications 9:4162; Bao, X., et al. (2019), Neuron 102:1066–75.

48. Knierim, J. (2015), Current Biology 25:R1116–R1121.

49. Kandel (2006), p. 134.

50. Hodgkin, A. and Huxley, A. (1952), Proceedings of the Royal Society of London B 140:177–83.

51. Kandel (2006), p. 147.

52. Hesse, R., et al. (2019), https://www.biorxiv.org/content/10.1101/ 631556v1; Asok, A., et al. (2019), Trends in Neuroscience 42:14–22.

53. McConnell, J., et al. (1959), Journal of Comparative and Physiological Psychology 52:1–5; Travis, G. (1981), Social Studies of Science 11:11–32.

54. Morange, M. (2006), Journal of Bioscience 31:323–7.

55. Byrne, W., et al. (1966), Science 153:658–9.

56. Malin, D. and Guttman, H. (1972), Science 178:1219–20.

57. Ungar, G., et al. (1972), Nature 238:198–202.

58. Stewart, W. (1972), Nature 238:202–9.

59. Wilson, D. (1986), Nature 320:313–14.

60. Irwin, L. (2007), Scotophobin: Darkness at the Dawn of the Search for Memory Molecules (Plymouth: Hamilton); Setlow, B. (1997), Journal of the History of the Neurosciences 6:181–92.

61. Nye, M. (1980), Historical Studies in the Physical Sciences 11:125–56.

62. Shomrat, T. and Levin, M. (2013), Journal of Experimental Biology 216:3799–810.

63. Bliss, T. and Lomo, T. (1973), Journal of Physiology 232:331–56.

64. Lomo, T. (2017), Acta Physiologica 222:e12921.

65. Cooke, S. and Bliss, T. (2006), Brain 129:1659–73.

66. Bliss, T. and Collingridge, G. (1993), Nature 361:31–9.

67. Cooke and Bliss (2006).

68. Nabavi, S., et al. (2014), Nature 511:348–52; Titley, H., et al. (2017), Neuron 95:19–32.

69. Ryan, T., et al. (2015), Science 348:1007–13.

70. Tonegawa, S., et al. (2018), Nature Reviews Neuroscience 19:485–98.

71. Crick, F. (1982), Trends in Neuroscience 5:44–6.

72. Roberts, T., et al. (2010), Nature 463:948–52; Hayashi-Takagi, A., et al. (2015), Nature 525:333–8.

73. Adamsky, A., et al. (2018), Cell 174:59–71.

74. Доступны и другие формы обучения – см. Tonegawa et al. (2018).

75. Han, J., et al. (2009), Science 323:1492–6.

76. Ramirez, S., et al. (2013), Science 341:387–91.

77. Redondo, R., et al. (2014), Nature 513:426–30.

78. Ramirez, S., et al. (2015), Nature 522:335–9.

79. Vetere, G., et al. (2019), Nature Neuroscience 22:933–40.

80. Saunders, B., et al. (2018), Nature Neuroscience 21:1072–83.

81. Phelps, E. and Hofmann, G. (2019) Nature 572:43–50.

82. Liu, X., et al. (2014), Philosophical Transactions of the Royal Society of London: B 369:20130142.

83. Poo, M.-M., et al. (2016), BMC Biology 14:40.

11. Нейронные цепи. 1950-е – настоящее время

1. Hubel, D. and Wiesel, T. (2005), Brain and Visual Perception: The Story of a 25-Year Collaboration (Oxford: Oxford University Press), p. 60; Hubel, D. and Wiesel, T. (1959), Journal of Physiology 148:574–91; Hubel, D. and Wiesel, T. (2012), Neuron 75:182–4.

2. Barlow, H. (1953), Journal of Physiology 119:69–88.

3. Lorente de No, R. (1938), Journal of Neurophysiology 1:207–44.

4. Mountcastle, V. (1957), Journal of Neurophysiology 20:408–34.

5. Lettvin et al. (1959); Maturana, H., et al. (1960), Journal of General Physiology 43:129–76.

6. Spinelli, D., et al. (1968), Experimental Neurology 22:75–84; Cayco-Gajic, N. and Sweeney, Y. (2018), Journal of Neuroscience 38:6442–4.

7. Blakemore, C. and Cooper, G. (1970), Nature 228:477–8.

8. Hebb (1949), p. 31.

9. Gross, C. (2002b), The Neuroscientist 8:512–18; проницательное исследование истории и философских основ «бабушкиной клетки»: Barwich, A.-S. (2019) Frontiers in Neuroscience 13:1121.

10. Konorski, J. (1967), Integrative Action of the Brain: A Multidisciplinary Approach (Chicago: University of Chicago Press); Gross (2002b).

11. Gross, C., et al. (1972), Journal of Neurophysiology 35:96–111.

12. Gross, C., et al. (1969), Science 166:1303–6; Gross, C. (1998), Brain, Vision, Memory: Tales in the History of Neuroscience (London: MIT Press).

13. Perrett, D., et al. (1982), Experimental Brain Research 47:329–42; Kendrick, K. and Baldwin, B. (1987), Science 236:448–50.

14. Kendrick and Baldwin (1987), p. 450.

15. Quian Quiroga, R., et al. (2005), Nature 435:1102–7.

16. Koch, C. (2012), Consciousness: Confessions of a Romantic Reductionist (London: MIT Press), p. 65.

17. Quian Quiroga, R., et al. (2008), Trends in Cognitive Science 12:87–91.

18. Waydo, S., et al. (2006), Journal of Neuroscience 26:10232–4.

19. Yuste, R. (2015), Nature Reviews Neuroscience 16:487–97, p. 488.

20. Goodale, M. and Milner, A. (1992), Trends in Neuroscience 15:20–25.

21. Milner, A. (2017), Experimental Brain Research 235:1297–308.

22. Vargas-Irwin, C., et al. (2015), Journal of Neuroscience 35:10888–97.

23. Saur, D., et al. (2008), Proceedings of the National Academy of Sciences USA 105:18035–40.

24. Barlow, H. (1972), Perception 1:371–94; Barlow, H. (2009), Perception 38:795–807.

25. Crick, F. (1958), Symposia of the Society of Experimental Biology 12:138–63.

26. Boden (2006), vol. 2, p. 1206.

27. James (1890), vol. 1, p. 179.

28. Barlow (1972), p. 390.

29. Там же, p. 381.

30. Barlow (2009), p. 797.

31. White, J., et al. (1986), Philosophical Transactions of the Royal Society of London: B 314:1–340.

32. White J. (2013), in The C. elegans Research Community (eds.), WormBook, https://tinyurl.com/mindofworm.

33. Crick, F. and Jones, E. (1993), Nature 361:109–10.

34. Felleman, D. and Van Essen, D. (1991), Cerebral Cortex 1:1–47.

35. Sporns O., et al. (2005), PLoS Computational Biology 1:e42, p. 245; Hagmann, P. (2005), ‘From Diffusion MRI to Brain Connectomics’ (PhD Thesis, Lausanne: EPFL), doi:10.5075/epfl-thesis-3230; Seung, S. (2012), Connectome: How the Brain’s Wiring Makes Us Who We Are (Boston: Houghton Mifflin Harcourt).

36. Morabito, C. (2017), Nuncius 32:472–500.

37. Swanson, L. and Lichtman, J. (2016), Annual Review of Neuroscience 39:197–216, p. 197.

38. Bardin, J. (2012), Nature 483:394–6.

39. Smith, S., et al. (2015), Nature Neuroscience 18:1565–7.

40. Ingalhalikar, M., et al. (2014), Proceedings of the National Academy of Sciences USA 111:823–8; Joel, D. and Tarrasch, R. (2014), Proceedings of the National Academy of Sciences USA 111:E637; Cahill, L. (2015), Proceedings of the National Academy of Sciences USA 111:577–8.

41. Morgan, J. and Lichtman, J. (2013), Nature Methods 10:494–500, p. 497.

42. E conomo, M., et al. (2016), eLife 5:e10566.

43. Wolff, S. and Olveczky, B. (2018), Current Opinion in Neurobiology49:84–94; Winnubst. J., et al. (2019), Cell, 179:268–81

44. Ero, C., et al. (2018), Frontiers in Neuroinformatics 12:00084.

45. Bargmann, C. (2013), Bioessays 34:458–65, p. 464.

46. White (2013).

47. Swanson and Lichtman (2016), p. 198.

48. Bargmann, C. and Marder, E. (2013), Nature Methods 10:483–90.

49. Shimizu, K. and Stopfer, M. (2013), Current Biology 23:R1026–R1031.

50. Ohyama, T., et al. (2015), Nature 520:633–9.

51. Morgan, J. and Lichtman, J. (2019), https://www.biorxiv.org/content/ 10.1101/683276v1

52. Sasaki, T., et al. (2012), Proceedings of the National Academy of Sciences USA 109:20720–5.

53. Mu, Y., et al. (2019), Cell 178:27–43.

54. Savtchouk I. and Volterra, A. (2018), Journal of Neuroscience 38:14–25; Fiacco, T. and McCarthy, K. (2018), Journal of Neuroscience 38:3–13.

55. Fitzsimonds, R., et al. (1997), Nature 388:439–48.

56. Bullock, T., et al. (2005), Science 310:791–2.

57. Yuste (2015).

58. Harvey, C., et al. (2012), Nature 484:62–8.

59. Yuste (2015), p. 494.

60. Buzsaki, G. (2010), Neuron 68:362–85; Buzsaki, G. (2019), The Brain from Inside Out (New York: Oxford University Press).

61. Saxena, S. and Cunningham, J. (2019), Current Opinion in Neurobiology 55:103–11.

62. Простое объяснение низкоразмерных многообразий: Richard Gao’s blog post: https://tinyurl.com/manifold-explanation.

63. Gallego, J., et al. (2017), Neuron 94:978–84; Gonzalez, W., et al. (2019), Science 365:821–5; Oby, E., et al. (2019), Proceedings of the National Academy of Sciences