Мозг. Инструкция пользователя — страница 30 из 33

Недавнее прошлое. Настоящий качественный скачок произошел в 70-х годах, когда были совершены многочисленные изобретения и нейротехнологические открытия. В качестве примера можно привести компьютерную осевую томографию (КТ), использующую рентгеновские лучи для послойного фотографирования мозга и создания его трехмерной модели. В самом начале этот процесс занимал три часа, теперь он длится несколько минут. С этим методом соперничает магнитно-резонансная томография (МРТ), которая регистрирует собственные электромагнитные поля и волны мозга и создает картину его анатомических особенностей. Позитронная эмиссионная томография (ПЭТ), придуманная два десятка лет назад, наконец стала реальностью: с помощью контрастного состава можно наблюдать различные физиологические функции тела, не только мозга, в реальном времени. А с помощью магнитоэнцефалографии (МЭГ) можно нарисовать карту мозга – она использует столь чувствительные магниты, что они регистрируют малейшие колебания поля, вызванные церебральной активностью. Таким образом, еще недавно примитивный, сегодня арсенал неврологов позволяет заглянуть в тайны мозга даже без электродов, не говоря уж о ножовке и сверле.

Настоящее. Развитие компьютерной техники, подготовленное еще в конце ХХ века и реализованное в последние десятилетия, привело к революции в области неврологии, совершившей массу открытий всего за несколько лет. Новые технологии непрерывно совершенствуются благодаря все увеличивающимся возможностям микропроцессорных устройств. КТ перестала быть осевой, ПЭТ превратилась в ОЭКТ (однофотонная эмиссионная компьютерная томография), МЭГ стала намного более чувствительной и детальной.

Настоящей звездой на небе нейронных исследований стало магнитно-резонансное сканирование, когда к нему добавилось словечко «функциональное» (фМРТ) – оно способно в реальном времени построить трехмерную модель самых активных отделов мозга, то есть тех, которые в данный момент наиболее насыщены кислородом. Метод показывает, куда движется кровь, несущая жизненно важное вещество. Большинство открытий, перечисленных выше, были сделаны благодаря этой технологии в сочетании с другими методами.

Каждая из технологий нейровизуализации имеет свои достоинства и недостатки, но ученые стараются опираться в своих выводах на комплексные исследования. Например, МЭГ дает разрешение с точностью до десяти миллисекунд, а фМРТ позволяет регистрировать картину мозга каждые несколько сотен миллисекунд: используя их вместе или последовательно, специалисты видят более точную картину изменений в мозге. Возможно, в будущем эти технологии покажутся примитивными, но сегодня они производят впечатление фантастики, творящейся у нас на глазах. Например, фМРТ уже начали использовать в некоторых следственных мероприятиях, чтобы определить степень осознанности действий (а значит, и виновности) опасных преступников.

Будущее. Нейротехнологии появились в зачаточном состоянии менее века назад и сделали гигантский шаг вперед. В будущем может появиться то, что расширит возможности нашего мозга.

Воображение подсказывает футуристические картины с микрочипами, внедренными под кожу для управления мозгами, или с внутричерепной стимуляцией способностей – пусть не в таком виде, как в кино, но на самом деле все это существует. Нейронные имплантаты, соединяющие мозг с компьютером, уже вживляют пациентам с тяжелыми формами эпилепсии, чтобы тормозить активность в определенных участках мозга, или инвалидам, которые управляют таким образом искусственной частью тела. Транскраниальная магнитная стимуляция (ТМС) способна регулировать возбудимость нейронов без хирургического вмешательства и используется в лечении тяжелых депрессий или нейродегенеративных синдромов[16].

Сегодня, для того чтобы установить человеку неврологический имплантат, нужно физически проделать отверстие в голове. К такой процедуре вряд ли прибегнет человек, не страдающий тяжелой формой эпилепсии, амнезии или паралича. Однако быстрое развитие технологий позволяет предположить, что в течение ближайших трех десятков лет мы сможем увидеть нечто совершенно невероятное. Технологии не стоят на месте и бурно эволюционируют.

Вначале экспериментальная пара компьютер-мозг с общим интерфейсом может быть весьма примитивной, ей придется преодолеть ряд проблем и противоречий. Однако постепенно система начнет совершенствоваться, пока не достигнет уровня коммерческого внедрения. И с этого момента, по мере смены версий, биоэлектроника станет надежным способом лечения патологий, улучшения памяти и даже настроения.

Ученым предстоит длительная и трудная работа по созданию этих новых технологий. И хотя в течение последних ста лет человечеству удалось создать невиданные доселе инструменты и методы, оно еще весьма далеко от глубинного познания структуры, связей и функций мозга. Достаточно вспомнить человеческий геном, который был расшифрован пятнадцать лет назад: значительная часть генов уже исследована, и их задача стала понятна, но до сих пор еще полно тех, чья функция непонятна и загадочна. При этом не следует забывать, что геном содержит генетическую информацию одного-единственного человека и различия между геномами играют собственную, весьма важную, но тоже пока таинственную роль.

Сегодня перед учеными стоит задача дешифровки коннектома, то есть структуры всех связей в нервной системе организма. Этот вопрос настолько важен для науки, что в США была запущена программа Brain Initiative, а в Европейском союзе – Human Brain Project. Сроки обеих программ рассчитаны на десять лет, к ним привлечены специалисты самых разных областей знаний, финансирование идет сразу из многих источников. В результате предполагается создать нечто вроде атласа мозга. Однако специалисты уверены, в большей или меньшей степени, что даже после завершения амбициозных программ мозг по-прежнему останется загадкой.

В этой книге мы не будем рассматривать далекое будущее, в котором наши праправнуки будут записывать содержание своего мозга в совершенно невообразимый компьютер и, как в уже появившихся фантастических романах и сериалах, смогут в нем жить (если никто не выдернет вилку из розетки, конечно). К этому моменту можно будет разморозить мозги тех экс-миллиардеров и экс-оптимистов, которые еще с 90-х годов прошлого века лежат в морозильных камерах в надежде, что в один прекрасный день технология достигнет таких высот, что сможет вернуть их к жизни, поумневшими и посвежевшими. Все может быть, но это все слишком отдаленное будущее, чтобы можно было достоверно о нем рассуждать.

Что касается ближайших тридцати, даже шестидесяти лет, можно с уверенностью сказать, что научные коллективы, занимающиеся расшифровкой структуры человеческого мозга во всей его невероятной сложности (мозгом занимается в том числе и Управление перспективных исследовательских проектов Министерства обороны США, сокращенно DARPA), неизбежно откроют пути к созданию новых мощных и перспективных нейротехнологий и столкнутся, скорее всего, со сложнейшими этическими вопросами.

Даже с точки зрения тех ограниченных знаний, которыми мы обладаем сегодня, вполне можно утверждать, что уже ничто не сможет остановить рукотворную эволюцию разума. И это будет воистину исторический upgrade (4.3.8) прежней версии системы [см. стр. 23].

12.2. ГММ (Генетически модифицированный мозг)

Тысячи лет назад вид Homo sapiens начал вмешиваться в генетику, выводя разные сорта растений или породы животных. Микроскопические соцветия мексиканского растения теосинте благодаря усилиям многих поколений крестьян превратились в массивные и калорийные початки кукурузы. Чихуахуа, порода самых мелких в мире собачек, тоже появилась не сама собой, а благодаря усилиям селекционеров, начинавших когда-то давным-давно работать с волком.

Десятилетия назад вид Homo sapiens начал проникать в генетику поглубже – в 1953 году был открыт код из азотистых оснований ATCG (аденин и тимин, цитозин и гуанин), составляющих сложную молекулу дезоксирибонуклеиновой кислоты, то есть ДНК. В 1994 году на американском рынке начались продажи первых генетически модифицированных помидоров, которые дольше не портились. В 1996 году был клонирован первый представитель млекопитающих, овечка Долли. В 2001 году был впервые расшифрован геном человека, состоящий, как оказалось, из 3.088.286.401 пар азотистых оснований. На расшифровку было потрачено почти 3 млрд долларов, а в 2017 году эта процедура стала устоявшейся практикой и стоит не более тысячи.

То, что может произойти в ближайшие век-два, даже трудно себе представить. Случиться может все что угодно – пишутся мрачные сценарии на эту тему. Новое международное движение трансгуманизм обещает будущее в более радужных тонах: новые методы и технологии будут использоваться для увеличения продолжительности жизни и даже для создания постчеловека, чьи способности будут кардинально отличаться от способностей современных людей.

Однако на пути этого будущего, несомненно, человечество столкнется с серьезными этическими проблемами. Речь идет об одном из крупнейших вызовов на пути развития человечества – история человеческого любопытства показывает, что, если что-то можно сделать, кто-нибудь это обязательно сделает.

Достаточно вспомнить оптогенетику – нейротехнологию, возникшую совсем недавно. Невозможно поверить, что кто-то воплотит в жизнь предположение Френсиса Крика: «световой сигнал идеален» для контроля нейронов. Соавтор модели ДНК написал это в 1999 году. Открыв магнитное поле и электричество, наука обнаружила способ влиять на внутренние области мозга, однако не на отдельные нейроны. Это удалось оптогенетике.

Для исследования из водорослей или бактерий извлекают гены, которые отвечают за различные типы опсинов [см. стр. 121] – протеинов, реагирующих на свет. Затем в лаборатории эти гены внедряются в ДНК лабораторных мышей, так, чтобы различные опсины соответствовали разным нейронам. Мозг животных соединяют с оптическим волокном, по которому передается свет разной частоты. Варьируя частоту света (то есть цвет – синий, желтый, красный), можно активировать или затормозить отдельные нейроны, отслеживая при этом поведение и реакцию мышей. Им как бы подаются телекоманды. Оптогенетика помогает понять назначение отдельных нервных клеток – это революционная технология, и сразу после изобретения ее начали использовать в сотнях лабораторий по всему миру.