[135] (а не в условиях искусственного освещения) значительно уменьшает болевые ощущения.
В 1984 году д-р Норманн Розенталь из Национального института здоровья обнаружил, что некоторые виды депрессии можно лечить солнечными ваннами, а недавнее исследование подтвердило, что полный световой спектр справляется с депрессией у некоторых пациентов не хуже, чем лекарства, и с меньшим количеством побочных эффектов. Эти идеи были известны древним грекам и римлянам. Греческий врач Аретей из Каппадокии[136] написал во II веке до н. э.: «Тех, кто впадает в апатию и летаргию, нужно выносить на воздух и оставлять на солнце, ибо причиной этой болезни является уныние». Если солнечный свет влияет на настроение, значит, он влияет на мозг.
Из школьной программы нам известно, что свет попадает на сетчатку глаза, где находятся особые клетки – палочки и колбочки; ими он преобразуется в электрические сигналы, которые проходят через нейроны зрительных нервов и поступают в зрительную кору в затылочной части мозга, где возникают зрительные образы.
В 2002 году был обнаружен второй путь, ведущий от сетчатки к мозгу и служащий совершенно иной цели. Наряду с клетками сетчатки, которыми мы пользуемся для зрительного восприятия (палочками и колбочками), были открыты другие светочувствительные клетки[137]. Они посылают электрические сигналы по отдельному проводящему пути, ведущему от оптического нерва к супрахиазматическому ядру (SCN), функция которого – регуляция наших биологических часов.
Биологические часы – это нечто большее, чем простой хронометр; они контролируют циклы активности и покоя главных органов тела в течение суток. Это одновременно хронометр и дирижер. SCN является частью гипоталамуса, и вместе они функционируют как опытный капельмейстер, контролирующий сложную симфонию наших физиологических потребностей – голода, жажды, полового влечения и желания спать, – регулируя уровень гормонов. Они также влияют на общий уровень возбуждения нашей нервной системы.
Древние китайцы знали, что каждый орган имеет свои периоды наибольшей и наименьшей активности. К примеру, согласно их наблюдениям, сердце и его энергии наиболее активны в середине дня, когда мы должны передвигаться, и наименее активны во время сна. Наша пищеварительная система активизируется после еды. Поскольку органические часы деактивируют наши почки во время сна, нам редко приходится мочиться по ночам, но это удобство пропадает с возрастом – отчасти потому, что органические часы, как любые старые часы, показывают уже не совсем точное время. Нейроны начинают срабатывать хаотично, и это пример зашумления мозга в пожилом возрасте.
Каждое утро, когда мы просыпаемся и свет попадает в наши глаза, сигнал об этом поступает в SCN, которое поочередно активирует наши органы. У людей после заката зрительные сигналы сообщают об отсутствии света во внешней среде; в свою очередь, SCN посылает это сообщение в шишковидную железу[138], которая высвобождает мелатонин – гормон, который делает нас сонными. Шишковидная железа прикрыта менее плотными тканями у ящериц, птиц и рыб, и свет, проникающий сквозь их тонкий череп, непосредственно стимулирует ее, что делает ее особенно похожей на «глаз». (Поэтому шишковидную железу часто называют «третьим глазом».) Эволюционное наследие напоминает нам, что наш костяной череп не является сейфом и что мозг развивался в постоянном взаимодействии со светом.
Мы почти исключительно связываем свет со зрением, которое считаем волшебным и почти непостижимым процессом. Но взаимоотношения со светом происходят и на еще более элементарном уровне. Свет инициирует химические реакции в живых организмах, причем не только в растениях. Одноклеточные организмы, лишенные глаз, имеют светочувствительные молекулы в своих внешних мембранах, которые снабжают их энергией. К примеру, светочувствительные молекулы галобактерий (Halobacterium), живущих на соляных болотах[139], преобразуют свет в оранжевой части спектра в энергию, необходимую для жизнедеятельности. При поглощении оранжевого света эти бактерии плывут к его источнику, чтобы получать больше энергии; свет в ультрафиолетовой и зеленой части спектра отпугивает их. Тот факт, что свет с разной длиной волны оказывает различное воздействие на организм, означает, что световые частоты переносят не только энергию, но и разные виды информации. Интересно, что светочувствительные молекулы, необходимые для выживания бактерии, в структурном отношении очень близки к светочувствительным молекулам в человеческой сетчатке, которые называются родопсином. Исходя из этого можно предположить, что наши глаза являются продуктом эволюции светочувствительных молекул.
Такая же необыкновенная чувствительность к свету существует в отдельных клетках и белках нашего собственного организма. В 1979 году ученые Карел Мартинек и Илья Березин из МГУ доказали, что наш организм наполнен многочисленными светочувствительными химическими переключателями и усилителями[140]. Свет с разной длиной волны (то есть из разных частей спектра) оказывает на них разное воздействие. Некоторые цвета активизируют работу ферментов в организме, ускоряют или тормозят клеточные процессы и влияют на выработку различных химических соединений. Альберт Сент-Дьерди, который получил Нобелевскую премию за открытие витамина С, обнаружил, что при переносе электрона из одной молекулы организма в другую (этот процесс называется переносом заряда) молекулы часто меняют цвет[141]; вернее, меняется тип света, который они излучают. Крайне выражен этот процесс у светлячков, у которых фермент люцифераза генерирует значительное количество видимого света. Таким образом, люди взаимодействуют со светом не только на уровне кожи; наши организмы не являются темными пещерами. В клетки проникают фотоны, и перенос энергии запускает разнообразные каскады изменений. Вопрос заключался в следующем: удалось ли кому-нибудь, пользуясь красивой метафорой Флоренс Найтингейл, сделать свет не только «художником», но и «скульптором», придающим новую форму нейронным сетям мозга?
Лекция и случайная встреча.
В декабре 2011 года я расстался со своими пациентами в 19.15 и поднялся на крыльцо штаб-квартиры медицинской ассоциации Онтарио. У меня имелся очень конкретный вопрос. Я уже знал, что при повреждении тканей мозга часто бывает возможно стимулировать другие, здоровые области с помощью различных действий – будь то умственные упражнения, движение или сенсорное восприятие окружающего мира – для реорганизации и формирования новых связей, а иногда даже для выращивания новых нейронов, принимающих на себя когнитивные функции поврежденных тканей. Но ограничительным фактором было обязательное наличие какой-то здоровой ткани, которая могла бы заменить поврежденную ткань. Я хотел узнать, может ли световая терапия помочь исцелению «больной» мозговой ткани, содействовать не замене, а восстановлению клеточного субстрата? Может ли она способствовать восстановлению общих клеточных функций нейронов? Если это возможно, то свет будет новым способом решения проблем мозга. После нормализации клеточных функций нейронные связи можно будет реорганизовать с помощью тренировок и таким образом восстановить утраченные когнитивные способности.
За обедом, когда мы с коллегами беседовали в столовой, я заметил в другом конце помещения стройную темноволосую женщину со средиземноморскими чертами умного лица; она двигалась осторожно и выглядела довольно хрупкой. Потом она подошла ко мне и медленно заговорила. Она сказала, что мое лицо показалось ей знакомым, но она не знает, откуда, и ее это беспокоит. Прежде чем мы успели отреагировать, она добавила, что ее зовут Габриэллой Поллард. Потом я представился ей. Мы действительно раньше не слышали друг о друге.
Судя по ее осторожной, сдержанной и нетвердой походке, а также по немного замедленной речи, я заподозрил, что она борется с каким-то расстройством мозга. Вероятно, она пришла послушать лекцию по какой-то личной причине.
Вскоре начались выступления. Первым докладчиком был Фред Кан, хирург общего профиля, специализировавшийся на сосудистых операциях. Стройный и подтянутый, Кан носил седую копну волос, то и дело падавших ему на лоб. Хотя на вид ему было немногим более семидесяти, недавно ему исполнилось восемьдесят два года, и он по-прежнему работал больше шестидесяти часов в неделю. Судя по всему, он много загорал, особенно по сравнению со слушателями, в основном более молодыми и бледными тенелюбивыми людьми, опасавшимися рака кожи. Они знали, что солнце может быть опасным, но позабыли о том, что человеческая жизнь не могла бы развиваться без его лучей. Кан взял за правило проводить не меньше четырех часов на солнце в течение рабочей недели и еще больше по выходным дням. Он плавал четыре раза в неделю и совершал долгие прогулки на свежем воздухе. Он был одет довольно небрежно и выглядел так, как будто ему было бы гораздо удобнее в рабочем халате, нежели в костюме; к тому же он не признавал галстуков. Его речь была ровной и деловитой, с протяжным выговором человека, выросшего в сельской глубинке Онтарио, за которым скрывалась его история, его ирония и анекдотические ремарки, произносимые с бесстрастным выражением лица.
Как я узнал впоследствии, Кан родился в 1929 году в Германии, в еврейской семье. Он пережил «хрустальную ночь» с 9 на 10 ноября 1938 года, когда нацисты подожгли почти все немецкие синагоги и загнали 30 000 евреев в концентрационные лагеря. За три недели до начала Второй мировой войны его семья совершила дерзкий ночной побег на поезде и автомобиле, подкупив немецких чиновников и бросив все свое имущество, чтобы попасть в Голландию. В конце концов семья Кан переехала в Оксбридж в штате Онтарио и поселилась на ферме. Фред рос в сельской местности и ходил в маленькую школу из красного кирпича, каждую зиму преодолевая шесть миль по снегу, чтобы попасть туда и обратно. Подростком он часами работал на летнем солнце без рубашки. Он стал нелегально водить тра