Мозг материален. О пользе томографа, транскраниального стимулятора и клеток улитки для понимания человеческого поведения — страница 13 из 15

Примерно половина всех клеток в мозге – это клетки астроглии, или астроциты, названные так за свою красивую звездчатую форму. Они контактируют с каждым синапсом и откачивают оттуда лишние ионы калия, тем самым способствуя тому, чтобы нейрон после вспышки активности быстрее восстановил правильную концентрацию ионов по обе стороны своей мембраны и был готов к дальнейшей работе. Они также чистят синаптическую щель от остатков нейромедиатора, чтобы они не продолжали возбуждать следующий нейрон, когда уже не надо. Например, захватывают оттуда глутамат, переделывают его в глутамин и возвращают обратно в пресинаптическое окончание, чтобы там опять синтезировать глутамат. Астроциты, кроме того, выделяют вещества, способствующие росту новых синапсов, а еще тесно контактируют с кровеносными капиллярами, таким образом выбрасывая в кровь все лишнее и забирая оттуда все нужное. Астроглия может, например, забирать из крови глюкозу и транспортировать ее к своим подопечным нейронам, даже на довольно большие расстояния.

Другая важная разновидность глии – это олигодендроциты. Они вырабатывают[353] миелин, белково-жировую изоляционную оболочку для аксонов (отростков нервных клеток, которые передают информацию от нейрона к другим нейронам или к мышцам). Нервным клеткам иногда приходится отправлять свои аксоны на довольно протяженные расстояния (например, от спинного мозга на палец ноги). При этом вы помните, что сигнал распространяется по мембране нейрона постепенно: вовлекается один потенциал-чувствительный канал, потом соседний, потом следующий. Скорость распространения сигнала – метры в секунду. Это, конечно, неплохо, и большинство беспозвоночных этим вполне обходится, но мы, позвоночные, хотим соображать быстрее. Поэтому многие аксоны у нас миелинизированы. Клетка-олигодендроцит плотно-плотно оплетает отросток нейрона изолирующим материалом, и в этом месте его мембрана вообще не может пропускать никакие ионы. Пропускает ионы она только там, где изоляции нет (эти участки называются перехватами Ранвье и расположены примерно на расстоянии в один миллиметр друг от друга). Получается, что сигнал движется скачками, и это может увеличивать скорость его распространения аж до 150 метров в секунду. При заболеваниях, из‐за которых миелин разрушается, животные и люди страдают от огромного количества неврологических нарушений, от размытого зрения до плохой координации движений, потому что сигналы часто вообще теряются, рассеиваются, ослабевают по ходу передачи и не доходят до нужного места в принципе.

Особняком стоит микроглия, она вообще не родственник нервных клеток, она на ранних этапах эмбрионального развития мигрирует в центральную нервную систему из костного мозга (который, как вы знаете, занимается вообще‐то производством клеток крови, в частности иммунных клеток). Она играет в мозге функции, похожие на функции макрофагов в остальном организме, то есть подъедает всякий мусор. Более того, она может не только подъедать мусор, но и откусывать ненужные синапсы – и, по‐видимому, это играет большую роль в нормальном развитии мозга. Еще микроглия умеет разговаривать на том языке химических сигналов, который понятен настоящим иммунным клеткам (и, как пишет Кандель в своем учебнике, способна при необходимости – а иногда и по ошибке – призвать их в мозг, куда они в норме вообще не ходят), но вот это пока ужасно темная история. И про мозг‐то, как видите, не все понятно, а уж взаимодействие иммунитета и мозга вообще пока темный лес процентов на восемьдесят.

Ключевые отделы мозга

Анатомию мозга (как и абсолютно любую другую область биологического знания) легче понять, если смотреть на нее с точки зрения эволюции. Сначала были животные наподобие современных ланцетников, с нервной трубкой, проходящей по всей длине тела. Потом появились рыбки, у которых передний отдел нервной трубки здорово расширился, стал выполнять более сложные функции, стал уже называться мозгом и даже подразделяться на отделы, которые в общем унаследовали и мы, только у нас их стало еще больше. Потом уже этот передний конец нервной трубки так разросся, что ему пришлось всячески изгибаться, чтобы уместиться в черепе, и у нас, людей, уже сложно различить исходную линейную структуру – разве что на ранних стадиях эмбриогенеза. Про это есть классная книжка Нила Шубина “Внутренняя рыба”, посвященная темному наследию нашей биологической эволюции.

Если смотреть от хвоста к мордочке, то сначала мы увидим спинной мозг, который ничего сложного, в общем, не делает. Передает вверх сигналы от рецепторов кожи, мышц и суставов, передает вниз команды для мышц. Может осуществлять какую‐то простую рефлекторную деятельность, вроде отдергивания руки от горячего предмета. В принципе, можно сказать, что спинной мозг контролирует ходьбу млекопитающих, полет птиц или плавание рыб – но только до тех пор, пока мы размеренно совершаем однообразные движения. Как только дорожка, по которой идет животное, становится неровной, а птица или рыба попадает в зону турбулентности, приходится подключать высшие отделы мозга, чтобы принимать меры. И уж точно не спинным мозгом мы решаем, куда мы хотим попасть.

Спинной мозг переходит в ствол мозга, и вот это уже прямо самая важная область. Если его повредить, человек почти наверняка умрет. Зато если ствол мозга сохранился, то жизнеобеспечение возможно даже без всего остального. Ну насчет человека я не уверена, но был такой знаменитый цыпленок по имени Майк. Хозяин собирался отрубить ему голову, чтобы съесть птицу на ужин, но удар топора пришелся высоко, и ствол мозга сохранился. Майк остался жив, он ходил (довольно неуклюже), балансировал на жердочке, пытался кукарекать, хотя и издавал только невнятное клокотание. Хозяин засовывал ему в пищевод зерна кукурузы, заливал молоко из пипетки и здорово обогатился, гастролируя с животным по всей Америке. Так продолжалось полтора года, но потом Майк погиб от удушья: у него и раньше были проблемы с дыханием, но обычно хозяин успевал прочистить ему трахею, откачивая слизь шприцем. Увы.

Ствол мозга включает три отдела: продолговатый мозг, мост и средний мозг (продолжаем идти снизу вверх). Продолговатый мозг контролирует дыхание, кровообращение, дает нам возможность глотать, чихать и кашлять, испытывать тошноту. Мост вовлечен уже в более сложные функции, такие как сон, мочеиспускание, поддержание равновесия. А вообще это пункт приема и перераспределения сигналов, он позволяет моторной коре обмениваться информацией с мозжечком, пропускает через себя информацию от органов чувств, отправляет команды на мимические мышцы и так далее и так далее (мы вплотную подошли к тому моменту, когда перечислить все функции какого‐то отдела уже невозможно). Средний мозг – это основная область, в которой вырабатывается дофамин, а значит, она важна для всего, для чего важен этот нейромедиатор (то есть для контроля за движениями и мотивации). Это первый отдел из тех, которые уже всплывали в основном тексте книжки: совсем недавно, в главке про любовь, я упоминала, что у влюбленных людей повышена активность вентральной области покрышки; вот она как раз там.

Во время эмбрионального развития от того же участка нервной трубки, который превратится в ствол мозга, обособляется и мозжечок. Это важнейшая зона для контроля за движениями, их планирования, моторной памяти. Такие задачи требуют больших вычислительных мощностей, причем не столько даже для формирования правильного движения, сколько для подавления всего лишнего (понаблюдайте за тем, как хаотично двигаются люди, которые только начали осваивать какой‐то моторный навык, и насколько экономичными на этом фоне выглядят отточенные движения профессионалов). В мозжечке выплетены красивейшие и сложнейшие нейронные сети, и абсолютное большинство нейронов мозга находится именно там – примерно 69 миллиардов из тех 86, которые вообще есть у человека. При этом интересно, что сам мозжечок отправляет мало сигналов вниз, к мышцам тела. В основном он сообщает моторной коре, как именно он рекомендует достигать поставленных целей, а окончательный приказ формулирует уже она.

Следующий большой отдел – это промежуточный мозг. Он включает в себя таламус, про который мы говорили очень много, – именно там, как нетрудно догадаться, находится латеральное коленчатое тело таламуса, промежуточная станция обработки зрительной информации. По соседству есть медиальное коленчатое тело, которое делает то же самое для слуховой системы. И вообще таламус – центральный пункт обработки и перераспределения сенсорной информации, а еще он важен для контроля за сном и бодрствованием. Именно таламус поражается при фатальной семейной бессоннице – прионном[354] заболевании, при котором человек все меньше и меньше способен спать, начинает страдать от галлюцинаций и панических атак и через несколько месяцев умирает. Никакого лечения от этой болезни нет. Она развивается у людей с мутацией в гене PRNP, но не сразу, а в среднем в возрасте 50 лет. Соответственно, у них уже есть дети, которые наблюдают мучительную смерть своих родителей и знают, что с вероятностью 50 % то же самое произойдет и с ними. Но есть и хорошие новости: в мире известно всего четыре семьи, страдающие от этой болезни, и понятно, что теперь, в XXI веке, все члены этих семей могут воспользоваться преимплантационной генетической диагностикой, чтобы гарантированно не передать заболевание своим детям.

Кроме таламуса, к промежуточному мозгу относятся эпиталамус, гипоталамус и гипофиз. Про них я в этой книжке ничего не рассказывала, но они важные. Эпиталамус вырабатывает мелатонин (“гормон сна”), гипоталамус контролирует вообще всю работу эндокринной системы, а гипофиз слушает команды гипоталамуса и выбрасывает в кровь разные гормоны, которые дальше действуют либо на эндокринные железы в нашем организме (как, например, тиреотропный гормон, регулирующий работу щитовидной железы), либо напрямую на все наши органы и клетки (как соматотропный гормон, он же “гормон роста”).