Journal of Neuroscience, 32, 9601–9612.
— Kraus, B. J., Robinson, R. J., White, J. A., Eichenbaum, H., Hasselmo, M. E. (2013). Hippocampal “time cells”: Time versus path integration. Neuron, 78, 1090–1101.
— Kwan, D., Craver, C. F., Green, L., Myerson, J., Boyer P., Rosenbaum, R. S. (2012). Future decision-making without episodic mental time travel. Hippocampus, 22, 1215–1219.
— Kyriacou, C. P., Hall, J. C. (1980). Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male’s courtship song. Proceedings of the National Academy of Sciences of the USA, 77, 6729–6733.
— Laje, R., Buonomano, D. V. (2013). Robust timing and motor patterns by taming chaos in recurrent neural networks. Nature Neuroscience 16, 925–933.
— Lakoff, G., Johnson, M. (1980/2003). Metaphors we live by. Chicago: University of Chicago Press. В русском переводе: Лакофф Дж., Джонсон М. Метафоры, которыми мы живем. — УРСС, 2004.
— Lamy, D., Salti, M., Bar-Haim, Y. (2009). Neural correlates of subjective awareness and unconscious processing: an ERP study. Journal of Cognitive Neuroscience, 21, 1435–1446.
— Landes, D. S. (1983). Revolution in time: Clocks and the making of the modern world. New York: Barnes & Noble.
— Lashley, K. S., ed. (1951). The problem of serial order in behavior. New York: Wiley.
— Lasky, R. (2012). Time and the twin paradox. Scientific American, 21, 30–33.
— Lau, H. C., Rogers, R. D., Passingham R. E. (2007). Manipulating the experienced onset of intention after action execution. Journal of Cognitive Neuroscience, 19, 81–90.
— Lavie, P. (2001). Sleep-wake as a biological rhythm. Annual Review of Psychology, 52, 277–303.
— Lebedev, M. A., O’Doherty, J. E., Nicolelis, M. A. L. (2008). Decoding of temporal intervals from cortical ensemble activity. Journal of Neurophysiology, 99, 166–186.
— Lee, T. P., Buonomano, D. V. (2012). Unsupervised formation of vocalization-sensitive neurons: a cortical model based on short-term and homeostatic plasticity. Neural Computation, 24, 2579–2603.
— Lehiste, I. (1960). An acoustic — phonetic study of internal open juncture. Phonetica, 5 (suppl. 1), 5–54.
— Lehiste, I., Olive, J. P., Streeter, L. A. (1976). Role of duration in disambiguating syntactically ambiguous sentences. Journal of the Acoustical Society of America, 60, 1199–1202.
— Leon, M. I., Shadlen, M. N. (2003). Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron, 38, 317–327.
— Levine, R. (1996). The geography of time. New York: Basic Books.
— Levy, W. B., Steward, O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience, 8, 791–797.
— Lewis, P. A., Miall, R. C., Daan, S., Kacelnik, A. (2003). Interval timing in mice does not rely upon the circadian pacemaker. Neuroscience Letters, 348, 131–134.
— Libet, B., Gleason, C. A., Wright, E. W., Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain, 106 (Pt. 3), 623–642.
— Lieving, L. M., Lane, S. D., Cherek, D. R., Tcheremissine, O. V. (2006). Effects of marijuana on temporal discriminations in humans. Behavioral Pharmacology, 17, 173–183.
— Livesey, A. C., Wall, M. B., Smith, A. T. (2007). Time perception: Manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia, 45, 321–331.
— Lockwood, M. (2005). The labyrinth of time: Introducing the universe. Oxford: Oxford University Press.
— Loftus, E. F. (1996). Eyewitness testimony. Cambridge, MA: Harvard University Press.
— Loftus, E. F., Schooler, J. W., Boone, S. M., Kline, D. (1987). Time went by so slowly: overestimation of event duration by males and females. Applied Cognitive Psychology, 1, 3–13.
— Loh, D. H., Navarro, J., Hagopian, A., Wang, L. M., Deboer, T., Colwell, C. S. (2010). Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice. PLoS ONE, 5, e12546.
— Lombardi, M. A. (2002). Fundamentals of time and frequency. In: Mechanotronics handbook (Bishop, RH, ed.). New York: CRC Press.
— Long, M. A., Fee, M. S. (2008). Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature, 456, 189–194.
— Long, M. A., Jin, D. Z., Fee, M. S. (2010). Support for a synaptic chain model of neuronal sequence generation. Nature, 468, 394–399.
— Maass, W., Natschläger, T., Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14, 2531–2560.
— MacDonald, C. J., Lepage, K. Q., Eden, U. T., Eichenbaum, H. (2011). Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron, 71, 737–749.
— MacDonald, C. J., Carrow, S., Place, R., Eichenbaum, H. (2013). Distinct hippocampal time cell sequences represent odor memories in immobilized rats. Journal of Neuroscience, 33, 14607–14616.
— MacKillop, J., Amlung, M. T., Few, L. R., Ray, L. A., Sweet, L. H., Munafo, M. R. (2011). Delayed reward discounting and addictive behavior: a meta-analysis. Psychopharmacology (Berl.), 216, 305–321.
— Mante, V., Sussillo, D., Shenoy, K. V., Newsome, W. T. (2013). Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature, 503, 78–84.
— Markram, H., Lubke, J., Frotscher, M., Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–215.
— Martin, F. H., Garfield, J. (2006). Combined effects of alcohol and caffeine on the late components of the event-related potential and on reaction time. Biological Psychology, 71, 63–73.
— Matell, M. S., Meck, W. H. (2004). Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cognitive Brain Research 21, 139–170.
— Matsuda, F. (1996). Duration, distance, and speed judgments of two moving objects by 4- to 11-year olds.Journal of Experimental Child Psychology, 63, 286–311.
— Matthews, M. R. (2000). Time for science education: how teaching the history and philosophy of pendulum motion can contribute to science literacy. New York: Kluwer Academic.
— Matthews, W. J. (2015). Time perception: The surprising effects of surprising stimuli. Journal of Experimental Psychology: General, 144, 172–197.
— Matthews, W. J., Meck, W. H. (2016). Temporal cognition: Connecting subjective time to perception, attention, and memory. Psychological Bulletin, 142, 865–890.
— Mauk, M. D., Donegan, N. H. (1997). A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learning &Memory, 3, 130–158.
— Mauk, M. D., Buonomano, D. V. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27, 307–340.
— McClure, G. Y., McMillan, D. E. (1997). Effects of drugs on response duration differentiation. VI: differential effects under differential reinforcement of low rates of responding schedules. Journal of Pharmacology and Experimental Therapeutics, 281, 1368–1380.
— McClure, S. M., Laibson, D. I., Loewenstein, G., Cohen,J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306, 503–507.
— McGlone, M. S., Harding, J. L. (1998). Back (or forward?) to the future: The role of perspective in temporal language comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 1211–1223.
— Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3, 227–242.
— Medina, J. F., Garcia, K. S., Nores, W. L., Taylor, N. M., Mauk, M. D. (2000). Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. Journal of Neuroscience, 20, 5516–5525.
— Mégevand, P., Molholm, S., Nayak, A., Foxe, J. J. (2013). Recalibration of the multisensory temporal window of integration results from changing task demands. PLoS ONE, 8, e71608.
— Meijer, J. H., Robbers, Y. (2014). Wheel running in the wild. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20140210.
— Mello, G. B. M., Soares, S., Paton, J. J. (2015). A scalable population code for time in the striatum. Current Biology, 9, 1113–1122.
— Merchant, H., Harrington, D. L., Meck, W. H. (2013). Neural basis of the perception and estimation of time. Annual Review of Neuroscience, 36, 313–336.
— Meyer, L. (1961). Emotion and meaning in music. Chicago: University of Chicago Press.
— Miall, C. (1989). The storage of time intervals using oscillating neurons. Neural Computation, 1, 359–371.
— Milham, W. I. (1941) Time & timekeepers: Including the history, construction, care, and accuracy of clocks and watches. London: Macmillan, 37.
— Mita, A., Mushiake, H., Shima, K., Matsuzaka, Y., Tanji, J. (2009). Interval time coding by neurons in the presupplementary and supplementary motor areas. Nature Neuroscience, 12, 502–507.
— Modi, M. N., Dhawale, A. K., Bhalla, U. S. (2014). CA1 cell activity sequences emerge after reorganization of network correlation structure during associative learning. Elife, 3, e01982.
— Montague, P. R. (2008). Free will. Current Biology, 18, R584–R585.
— Moorcroft, W. H., Kayser, K. H., Griggs, A. J. (1997). Subjective and objective confirmation of the ability to self-awaken at a self-predetermined time without using external means.