[107]. Смысл потенциала активности меняется в зависимости от того, выработку каких нейромедиаторов он запускает и на что они воздействуют. В отдельных частях центральной нервной системы, например в сетчатке, нейромедиаторы выделяются вообще без потенциалов активности[108].
Воздействие нейромедиаторов определяется также факторами, не зависящими от нейронов: важная роль нейроглии заключается еще и в утилизации части выработанных нейромедиаторов. Если темп потребления нейромедиаторов глиальными клетками меняется, количество нейромедиаторов регулируется примерно так же, как уровень воды в ванне, если закрыть или открыть слив. Кроме того, глиальные клетки испускают собственные сигнальные молекулы, которые иногда называют «глиомедиаторы». Глиомедиаторы, как и нейромедиаторы, вызывают кальциевые сигналы и в нейронах, и в других глиальных клетках. Функциональное воздействие глиомедиаторов на поведение и когнитивные процессы – важная тема современных исследований[109].
Кроме того, на воздействие нейрохимикалий сильно влияет не зависящий от клеток процесс диффузии – пассивного распространения молекул, обусловленный их случайным движением в жидкости. Диффузия вызывает и спонтанную дисперсию капелек масла по поверхности лужи, и бесцельную пляску микроскопических частиц в молоке – так называемое броуновское движение. Она же влияет на постсинаптическую активность нейромедиаторов, причем весьма существенно; как именно это происходит, мы пока не понимаем, но знаем, что это совсем не похоже на упорядоченную передачу информации по контактам между нейронами, будто по проводам. Некоторые нейромедиаторы и большинство нейромодуляторов славятся именно своей способностью распространяться из синапсов посредством диффузии и воздействовать на далекие клетки, не связанные непосредственно с теми клетками, которые выработали эти вещества. Среди подобных диффундирующих молекул – дофамин, нейромедиатор, с которым мы уже сталкивались, когда обсуждали обучение за вознаграждение у обезьян. Значимость диффузии дофамина особенно видна на примере действия наркотиков – кокаина, амфетамина и риталина. Эти препараты блокируют молекулы, задача которых – убирать дофамин после того, как синапсы его выработали. Таким образом, наркотики способствуют распространению дофамина в мозге, в результате чего он затрагивает множество клеток[110].
Кроме того, диффузия нейромедиаторов лежит в основе явления помех при синаптической связи: это еще один неконвенциональный вид коммуникации в мозге, при котором молекулы, выработанные одним синапсом, попадают в чужие синапсы и влияют на их функции[111]. С точки зрения синапса, подвергнувшегося такому вторжению, это словно во время личного телефонного разговора с другом услышать, как в трубке бубнит третий голос. Есть много исследований, показывающих, что неожиданно высокие уровни помех наблюдаются между синапсами, использующими нейромедиатор глутамат, который вырабатывают 90 % нейронов в мозге и который известен в основном быстрым действием внутри отдельных синапсов[112]. Эти результаты примечательны тем, что ставят под сомнение идею синапса как фундаментальной единицы передачи информации в мозге. Ведь и помехи при синаптической связи, и более общие эффекты нейрохимической диффузии в мозге – это аспекты так называемой передачи информации по объему, поскольку действуют они вширь по объему тканей, а не по конкретным связям между парами нейронов[113]. Передача по объему возникает при перекрывании «волн» колеблющихся концентраций нейромедиаторов, и это больше похоже на рябь от дождя на поверхности пруда, чем на упорядоченное течение электричества по проводам.
Так что с точки зрения нейромедиатора нейроны – это специализированные клетки, помогающие формировать концентрации нейрохимических веществ в пространстве и времени наряду с нейроглией и процессами пассивной диффузии. Нейромедиаторы, в свою очередь, побуждают клетки мозга вырабатывать больше нейромедиаторов – и местно, и удаленно. Каждый раз, когда воспринимается чувственный стимул или принимается решение, мозг захлестывают бурные волны нейромедиаторов, которые смешиваются с фоновыми химическими веществами, соотношение которых постоянно меняется во всем межклеточном пространстве мозга. Если смотреть на все сквозь это мутное химическое варево, электрические свойства нейронов кажутся почти что и неважными – на их место подошел бы любой достаточно быстродействующий механизм преобразования химических сигналов. И в самом деле, в нервной системе некоторых мелких животных, например, нематоды Caenorhabditis elegans, электрические сигналы гораздо слабее, а потенциалы активности не зарегистрированы[114].
Такое представление о мозге гораздо больше напоминает воззрения древних мыслителей – только здесь не четыре жидкости, а сотня жизненно важных субстанций, соперничающих за влияние во внеклеточных кулуарах мозга, не говоря уже о тысячах веществ, которые взаимодействуют внутри каждой клетки. «Химический мозг» – не очень зрелищный, зато биологически обоснованный противовес сверкающему «технологическому мозгу» компьютерной эпохи и эфирному мозгу, действующему по законам квантовой физики и статистической механики. К тому же легко представить себе, что химический мозг – это прямой потомок первичного бульона из протобиологических реагентов, из которого и возникла жизнь в архейскую эру на юной планете Земля. А еще химический мозг – близкий родственник химической печени, химических почек, химической поджелудочной железы, то есть субпродуктов, которые мы едим, всех органов, чьи функции строятся на выработке и переработке жидкостей. Тогда с мозга отчасти спадает сакральный флер.
Я один из тех, кому, к сожалению, довелось познакомиться с культовой классической книгой Дагласа Хофштадтера «Гедель, Эшер, Бах» лишь в зрелые годы. Когда в колледже мой сосед по общежитию соблазнял меня поразительными парадоксами, которых так много в этой книге, я по уши закопался в домашние задания по физике и химии. Юные годы давно остались позади, прошло много лет, и вот я наконец взялся за «Геделя, Эшера, Баха», когда у меня не было уже ни терпения, ни юношеской живости ума, чтобы уделить этим парадоксам должное внимание. Я люблю Баха, обожаю разглядывать гравюры Эшера и очень интересуюсь загадочными работами Геделя, однако мне, увы, не хватило широты мировоззрения, чтобы насладиться рассуждениями автора о сознании, отдающими мистицизмом. В одной главе Хофштадтер объясняет структуру нервной системы согласно представлениям 70-х, и это перечисление сухих фактов на удивление похоже на современные научные воззрения и в некотором смысле показывает, как медленно прогрессировала все это время нейрофизиология. Кроме того, это описание сплошь пронизано научным дуализмом. Автор целиком и полностью перенимает компьютерную аналогию и выдвигает гипотезу, что «любой аспект мышления можно рассматривать как описание на высшем уровне некой системы, которая на низшем уровне управляется простыми и даже формальными правилами»[115].
Однако один отрывок из «Геделя, Эшера, Баха» ярко отражает мысль, которую я стремлюсь донести до читателя в этой главе; речь идет об отношениях фигуры и фона в рисунках и других видах искусства. Хофштадтер говорит о тех случаях, когда фон можно рассматривать как полноправный компонент изображения, и самый известный пример этого феномена – рисунки, на которых изображена то ли ваза, то ли два профиля (см. рис. 4).
Рис. 4. Оптическая иллюзия «Ваза или лица»
В современной нейрофизиологии нейроны и биоэлектрическая активность нервной системы – это «фигура» на изображении мозга, а многие другие составляющие мозговой деятельности – это «фон». Такой гештальт сильнейшим образом повлиял на интерпретацию «мозг-компьютер» и на повсеместное распространения дуализма «мозг-тело». Но подобно тому как зрительное восприятие безо всякого труда переключается с лиц на вазу и наоборот, так и наше понимание мозга способно столь же легко вывести на первый план не-нейронные, неэлектрические черты мозговой деятельности, что сразу сделает мозг больше похожим на другие органы. Химические вещества и электричество, активная коммуникация и пассивная диффузия, нейроны и нейроглия – все это части механизмов мозга. Ставить одни из этих составляющих выше других – все равно что выбирать главные шестеренки в часовом механизме. Если повернуть одну шестеренку, это приведет в движение все остальные, если убрать любую из них, часы сломаются. Именно поэтому попытки свести когнитивные процессы в мозге к электрическим сигналам или к его «проводке» – нервным волокнам, по которым распространяются электрические сигналы, – в лучшем случае упрощенчество, а в худшем – заблуждение.
Наша приверженность идее, что мозг функционирует согласно каким-то особым или идеализированным принципам, по большей части чуждым всей остальной биологии, – следствие сакрализации мозга. Когда мы представляем себе свой мозг как мощный компьютер, какой-то непостижимый чужеродный протез, вживленный в наш череп, а не как влажную смесь плоти и жидкости, которая там пульсирует точно так же, как и все остальные органы нашего организма, мозг представляется нам чем-то крайне далеким и загадочным. А ведь считать орган-вместилище души чем-то сухим, абстрактным, безъюморным и «безгуморным» – самый надежный способ поддерживать представление о душе, отделенной от тела. Мы еще убедимся, что это лишь один из аспектов, в которых идеализация мозга вступает в противоречие с более натуралистичными представлениями, в которых мозг и разум прочно укоренены в биологическом контексте и окружающей среде. В следующей главе мы рассмотрим, в частности, как всеобщая убежденность в необычайной сложности мозга вносит свой огромный вклад в сакрализацию мозга и в дуалистическое различие между мозгом и телом.