Но мы уже знаем, что ДНК — не жесткая молекула, ведь ее можно очень сильно сплющивать, сминать, комкать, чтобы она уместилась в ядре. Так что давайте углубим наши исследования. Если все-таки принять двунитевую природу ДНК как данность (чтобы не усложнять картину), можно представить себе фрагмент нашего генома как длинную макаронину — возможно, самый длинный в мире кусок лапши тальятелле. В двух местах она отмечена пищевым красителем: эти места изображают энхансер и ген, кодирующий белок. Глядя на рис. 12.3, мы видим два возможных сценария. Пока макароны не сварили, они сохраняют жесткость, и энхансер находится вдали от гена. Но после варки макароны становятся гибкими. Теперь они могут сгибаться во всевозможных направлениях, в результате чего окрашенные участки, изображающие энхансер и ген, могут сближаться.
Некоторые части наших хромосом в определенных клетках подавляются и выключаются почти навсегда — чтобы отключить гены, которые никогда не понадобится экспрессировать в тканях данного типа. Скажем, клеткам нашей кожи незачем экспрессировать белки, которые используются кровью для переноса кислорода. В клетках кожи соответствующие области генома совершенно недоступны: они плотно свернуты и напоминают чересчур сжатую пружину. Однако в этих же клетках есть громадные области, не находящиеся в таком сверхсжатом состоянии. Гены в них вполне доступны и могут включаться. ДНК в таких зонах напоминает самую длинную вареную макаронину в мире, целиком заполняющую кастрюлю. Макаронина сгибается и извивается в кипящей воде, образуя всевозможные петли и дуги.
Рис. 12.3. Упрощенная схема показывает, как складывание гибкой молекулы ДНК может сблизить два отдаленных ее участка — скажем, энхансер и ген, кодирующий белок.
В таких случаях ген, кодирующий белок, и расположенный вдали от него энхансер могут сильно сближаться друг с другом. Затем длинная некодирующая РНК и комплекс-медиатор удерживают две петли вместе, обеспечивая усиление экспрессии гена. В этом медиатору должен помогать еще один комплекс[39]. Этот дополнительный комплекс требуется также для разделения хромосом, прошедших дупликацию в процессе деления клетки, так что он хорошо оснащен для работы с масштабными перемещениями ДНК. Мутации в некоторых генах, кодирующих белки этого дополнительного комплекса, вызывают две болезни развития — синдром Робертса и синдром Корнелии де Ланге17. Их проявления могут быть довольно разными и, вероятно, определяются тем, какой именно ген мутирует и какова эта мутация. Обычно дети с этими заболеваниями рождаются слишком маленькими и в дальнейшем сохраняют это отставание в росте. Они испытывают трудности с обучением. Зачастую у них деформированы конечности18.
Подобный «петлевой» механизм распространен довольно широко. Возможно, он применим не только к энхансерам. Не исключено, что с его помощью и другие регуляторные элементы сближаются с теми или иными генами. В рамках исследования трех клеточных типов, затронувшего лишь 1% человеческого генома, удалось выявить более 1000 таких дистанционных взаимодействий в каждой линии клеток. Эти сложные взаимодействия чаше всего связывали области, разделенные примерно 120 тысячами пар нуклеотидных оснований. Среди более чем 90% таких петель ближайший ген просто игнорировался. Представьте, что вам понадобилось одолжить немного сахара, и вы отправляетесь не к ближайшему соседу, а к кому-нибудь, кто живет в полумиле от вас.
Продолжим тему соседей. Описываемые внутриклеточные взаимодействия ужасающе легкомысленны. Представьте себе свингерскую вечеринку 1970-х, только во много раз более разнузданную. Исследователи обнаружили, что у некоторых генов количество различных регуляторных областей, с которыми они взаимодействуют, доходит до 20. А у некоторых регуляторных областей количество генов, с которыми они взаимодействуют, доходит до десятка. Вероятно, не все эти взаимодействия происходят в одной и той же клетке в одно и то же время. Ученые показали главное: между генами и регуляторными регионами нет добропорядочных однозначных отношений «А и В». Нет, мы имеем дело со сложным набором взаимодействий, дающим клетке (или организму в целом) необычайно гибкие возможности регулирования всего этого пестрого узора генетической экспрессии19. Нам еще многое предстоит выяснить об этих сетях и о том, как они действуют. Сейчас дело выглядит так: мусорная ДНК, формирующая промоторы, заводит наши генетические моторы, но есть и мусорная ДНК, формирующая длинные некодирующие РНК и энхансеры. Она-то и превращает двигатель из слабенького сандеровского в такой, который вполне может разогнать «вейрон» на автостраде жизни.
От кустарного промысла до фабричного конвейера
Несомненно, образование петель между отдельными регуляторными областями и генами — явление примечательное. Однако в клетках происходит и череда других дистанционных взаимодействий, еще более впечатляющая. Чтобы осознать ее значение, совершим небольшой экскурс в историю. В Британии начала XIX века основную часть текстильных работ выполняла кустарная промышленность. В сущности, речь идет о надомном производстве. Каждое из таких хозяйств производило сравнительно немного. Если для какого-нибудь региона страны составить карту центров текстильного производства того времени, вы увидите множество отдельных точек, каждая из которых показывает дом, где велось производство. А полвека спустя, в эпоху промышленной революции, картина стала совершенно иной. Вместо довольно однородного распределения точек, как на полотне пуантилиста, вы увидите на карте лишь несколько больших пятен, показывающих расположение крупных фабрик.
В человеческой клетке каждого типа обычно включены тысячи генов, кодирующих белки. Эти гены распределены по нашим 46 хромосомам. Можно бы ожидать, что при анализе клеток те места, где расположены включенные гены, будут выглядеть как тысячи крошечных точек, разбросанных по всему ядру. Однако (схематически это показано на рис. 12.4) на самом деле мы увидим лишь примерно 300-500 более крупных пятен20. Генетическая экспрессия в наших клетках — это вам не надомное производство. Она происходит в определенных местах ядра — на клеточных фабриках21.
Рис. 12.4. Точками обозначены позиции расположенных в ядре генов, кодирующих белки. Если бы эти гены располагались в ядре лишь в зависимости от своего положения на хромосомах, мы увидели бы диффузную картину (слева). На самом деле гены группируются друг с другом в трехмерном пространстве, создавая узор генетической локализации, показанный более крупными точками (справа).
Каждая фабрика содержит от 4 до 30 копий фермента, создающего молекулу информационной РНК на основе матрицы ДНК. Кроме того, на фабрике имеется большое количество других молекул, которые требуются для выполнения этой работы22,23. Ферменты остаются на месте, а нужный ген «прокручивается» через них в ходе своего копирования24. Чтобы ген добрался до фабрики, ДНК должна образовать петлю, дотягиваясь до нужной части клеточного ядра. Однако самый хитроумный фокус — в том, что на одной и той же фабрике может копироваться в информационную РНК более одного гена одновременно. Комбинация генов на той или иной фабрике не случайна. Как правило, там собираются гены, кодирующие те белки, которые выполняют в клетке родственные функции. Это как если бы на обычной фабрике у вас имелось несколько параллельных сборочных конвейеров. Как только все линии завершат выполнение своих индивидуальных задач, фабрика может собрать конечный продукт из получившихся компонентов. Одна фабрика делает лодки, другая выпускает миксеры. Фабрики в наших клетках обеспечивают скоординированную экспрессию генов. А значит, хромосомы одновременно образуют множество петель, сходящихся в одних и тех же областях.
Вот, к примеру, фабрика генов, кодирующих белки, необходимые для создания гемоглобина, сложной молекулы, которая переносит кислород в крови25. Другая фабрика используется для производства белков, необходимых для формирования сильной иммунной реакции26. Важная составляющая эффективного иммунного отклика — синтез белков, именуемых антителами. Антитела циркулируют в крови и других средах, связываясь с любыми чужеродными объектами, которые они обнаруживают. Ученые активировали клетки, вырабатывающие антитела, и стали исследовать, как ключевые гены будут образовывать петли. Изучались как раз гены, требуемые для создания антител. Как выяснилось, эти гены направлялись на одну и ту же фабрику. Любопытно, что некоторые из них при обычных условиях физически отдалены друг от друга, поскольку находятся на разных хромосомах.
Этот замечательный способ координации генетической экспрессии может повлечь за собой и некоторый риск. Лимфома Бёркитта — агрессивная форма рака, о которой мы уже упоминали в этой главе. При данном заболевании аномальным становится как раз тот тип клеток, который вырабатывает антитела. Сильный промотор с одной хромосомы занимает аномальную позицию рядом с геном другой хромосомы. До недавнего времени мы не понимали, почему эти области так склонны к объединению. Мы считали их физически отдаленными друг от друга, ведь они расположены на разных хромосомах. Но теперь нам известно, что обе области, обменивающиеся материалом и тем самым создающие эту опасную аномалию — гибридную хромосому, — способны перемещаться на фабрику, описанную чуть выше. Возможно, именно таким образом эти две различные хромосомы сближаются достаточно тесно, чтобы обменяться генетическим материалом. Не исключено, что обмен происходит, когда обе одновременно ломаются и затем неправильно ремонтируются на этой фабрике.
Может показаться, что эволюция в процессе отбора предпочла бы отбраковать эту опасную ситуацию. Но следует помнить, что естественный отбор зиждется на компромиссах, а не на стремлении к абсолютному совершенству. Возможность вырабатывать антитела, борющиеся с инфекциями, а значит, помогающие нам прожить достаточно долго, чтобы успеть размножиться, дает преимущества, явно перевешивающие потенциальные негативные последствия в виде увеличения риска развития онкологических заболеваний.