Музыка сфер — страница 14 из 25

* * *

Астрономическое сообщество приложило все возможные усилия, чтобы результаты наблюдений транзита Венеры в 1769 году были более точными, чем в 1761-м. И эта задача была успешно решена. Англичане организовали три экспедиции, о двух из которых рассказывается в приложении. Французы снарядили еще три: одну возглавил Лежантиль, который вновь столкнулся со множеством проблем, другую — Пингре, который отправился в Санто-Доминго и на этот раз добрался до цели без особых трудностей, третью — аббат Шапп, который отправился в Калифорнию в сопровождении двух испанских моряков. И англичане, и французы попросили у испанских властей разрешения произвести наблюдения на американских территориях. Разрешение испрашивали и предыдущие экспедиции, снаряженные Лондонским королевским обществом и Французской академией наук для проведения геодезических измерений и определения формы Земли. Ученый и мореплаватель Хорхе Хуан, который участвовал в геодезической экспедиции, изложил испанским властям свою точку зрения и сделал недвусмысленные замечания: «Причина рвения этих господ заключена в том, чтобы сделать насколько возможно следующее: не останется ни единого порта, укрепления, дороги, поселка и пустыни, который они не обследуют, с которого не составят план и не сообщат о коем публично. Сие в высшей степени нежелательно (…)»

Таким образом, испанцы согласились содействовать лишь миссии Жана-Батиста Шаппа: его сопровождали испанские моряки Висенте Дос и Сальвадор Медина, которые везли с собой все необходимые инструменты, чтобы произвести наблюдения независимо от французов. Экспедиция отправилась в путь из Кадиса 21 декабря 1768 года. Преодолев Атлантический океан и мексиканские территории, 15 апреля участники достигли Тихоокеанского побережья. Затем они сели на корабли и направились в Калифорнию, однако встречные ветры сменялись штилями, и путешественники увидели калифорнийское побережье лишь 18 мая. Так как транзит Венеры ожидался 3 июня, Шапп настоял на высадке на берегу вблизи обители Сан-Хоседель-Кабо, что участники экспедиции и сделали несмотря на то, что район был опустошен эпидемией тифа. Страх пропустить прохождение Венеры был сильнее страха перед болезнью. Необходимые наблюдения провели, однако Шапп, Сальвадор Медина и большая часть команды умерли от тифа. Следует добавить, что за прохождением Венеры по диску Солнца следили и другие испанские астрономы из Кадиса, Мехико и города Санта-Ана в Калифорнии.

Если учитывать только опубликованные результаты наблюдения, то за прохождением Венеры по диску Солнца следил 151 астроном из 77 разных точек земного шара. Результат наблюдений был таков: параллакс Солнца заключен на интервале между 8,43 м и 8,80 м — достаточно точная цифра, учитывая эффект черной капли. В XIX веке, располагая куда более качественными методами обработки данных и более точными координатами обсерваторий, Саймон Ньюкомб на основе этих же результатов получил значение параллакса в 8,79 м, которое весьма близко к тому, что используется в наши дни.

Транзит Венеры по диску Солнца в XIX веке наблюдался в 1874 и 1882 годах. На этот раз астрономов интересовало определение расстояний не только между планетами Солнечной системы, но и до ближайших звезд. Как мы уже упоминали, в 1838 году Фридрих Вильгельм Бессель впервые смог измерить параллакс звезды — это была звезда 61 Лебедя. К концу столетия были измерены параллаксы еще 21 звезды. При расчетах за основу бралось расстояние между двумя противоположными точками земной орбиты, а наблюдения за выбранными звездами производились с интервалом в 6 месяцев. Определить параллакс Солнца с максимально возможной точностью было крайне важно. При наблюдениях за прохождением Венеры ожидалось, что устранить эффект черной капли удастся с помощью фотографии, однако надежды астрономов не оправдались. Как бы то ни было, в 1874 году удалось получить достаточно точные результаты: по итогам измерений было определено, что параллакс Солнца лежит на интервале 8,79—8,83”. За прохождением Венеры в 1882 году следили не столь тщательно: чтобы существенно улучшить прежний результат, требовались новые методы, в то время недоступные.

Сегодня для определения расстояний между небесными телами результаты прошлых наблюдений астрономических транзитов не представляют ценности. Однако поиск внесолнечных планет ведется по точно такой же схеме.


Транзиты внесолнечных планет

Наблюдение за астрономическими транзитами — один из способов обнаружить новые планеты в различных планетных системах. 6 октября 1995 года Мишель Майор и Дидье Кело из Женевской обсерватории объявили об открытии первой экзопланеты — 51 Пегаса Ь. Целью ученых был поиск планет, схожих с нашей, где могут существовать те же условия для возникновения жизни, что и на Земле. В этом смысле открытие первой экзопланеты не принесло ожидаемых результатов: период ее обращения составлял 4,2 дня, а масса была примерно в 2 раза меньше массы Юпитера.

Новая планета представляла собой «очень горячий Юпитер, вращавшийся вокруг звезды по орбите меньшей, чем орбита Меркурия». Следовательно, температура и климат на планете были неблагоприятными для возникновения жизни. С тех пор пройден долгий путь и открыты сотни экзопланет в сотнях планетных систем, находящихся в самых разных частях Вселенной. Большинство этих планет достаточно массивны, и, по всей видимости, их планетные системы не слишком схожи с нашей.

Возможно, это связано с тем, что методы, используемые для обнаружения экзопланет, позволяют увидеть только наиболее массивные тела. При поисках экзопланет используются четыре метода:

1) фотографирование планеты и звезды;

2) наблюдение за движением планеты;

3) определение изменений радиальной скорости звезды, вызванных присутствием планеты;

4) изменение блеска звезды, вызванное прохождением перед ней планеты.

Первые три метода позволяют обнаружить лишь достаточно массивные тела, подобные Юпитеру, а последний метод можно применить для обнаружения планет, по размерам сопоставимых с Землей. Когда планета проходит по диску звезды, видимая яркость звезды снижается, а на ее кривой блеска четко виден момент прохождения планеты. Этот метод доступен даже астрономам-любителям, но его основной недостаток заключается в том, что так можно обнаружить только те планеты, плоскость орбиты которых расположена примерно под тем же углом, что и плоскость орбиты Земли. Вспомните — прохождение Венеры по диску Солнца можно наблюдать только в те периоды, когда Венера и Земля находятся вблизи линии узлов.

Кроме того, отклонение кривой блеска может длиться всего несколько часов, из-за этого вероятность обнаружить планету, подобную Земле, значительно сокращается.

И все же этот метод вызывает особый интерес астрономов.



Изменения кривой блеска звезды, вызванные прохождением экзопланеты перед ней.


Вероятность обнаружить планету, расположенную на расстоянии в одну астрономическую единицу (1 а.е.) от звезды, равна 0,5 %. Иными словами, если на расстоянии 1 а. е. от каждой звезды находится планета, то мы увидим один астрономический транзит, если будем вести наблюдения за 200 звездами. Если же подобные планеты имеются всего в 10 % планетных систем, то для обнаружения 5 планет нам потребуется вести наблюдения примерно за 10 тысячами звезд.

Глава 4. Измерение времени

Измерение времени было важной астрономической задачей с момента зарождения астрономии: древние люди пытались определить благоприятные периоды для посадки и сбора урожая, и так началось развитие астрономии. Для определения таких периодов и времени были созданы календари и солнечные часы, в которых используются математические законы. Не будем подробно рассказывать об этих устройствах, расскажем лишь об основных понятиях, связанных с солнечным часами, и дадим краткие инструкции по их изготовлению.



Солнечные часы указывают реальное солнечное время в том месте, где они установлены, а вовсе не то время, что показывают привычные нам наручные часы.


Как определить время по солнечным часам

Солнечные часы указывают солнечное время, которое отличается от того, что показывают привычные наручные часы. И в этом заключена огромная проблема: если вы не умеете правильно читать данные солнечных часов, то можете решить, что они показывают неправильное время. Однако на самом деле солнечные часы указывают истинное солнечное время.

До изобретения механических часов время определялось по солнечным. Однако в соответствии со вторым законом Кеплера Земля вращается вокруг Солнца с переменной скоростью. Следовательно, в разные периоды движение Солнца, видимое с Земли, будет отличаться. И эта особенность движения Солнца стала огромной проблемой при изготовлении механических часов: сконструировать механизм, в котором длительность часов различалась бы в зависимости от времени года, непросто. Тогда было найдено более простое решение: ученые определили мнимое Солнце, которое следовало вдоль той же траектории, что и настоящее, но с постоянной скоростью. Различие между положением двух солнц определяется так называемым уравнением времени. Как показано в таблице, разница во времени между реальным и мнимым Солнцем не превышает четверти часа. Но именно эта разница заставляет неопытного наблюдателя думать, что солнечные часы показывают неверное время.



На следующем графике приведено уравнение времени для разных месяцев года. Иногда этот график изображают в виде восьмерки, или аналеммы, и такой график точнее соответствует видимому движению Солнца по небу. Если мы регулярно будем фотографировать Солнце на небе в разные дни года в один и тот же час (в час, который будут указывать механические часы, то есть без учета уравнения времени), а затем наложим фотографии друг на друга, то полученное изображение будет очень похоже на аналемму.




Смещение реального Солнца относительно идеальной модели.