Н. И. Лобачевский. Его жизнь и научная деятельность — страница 13 из 16

Прусское правительство со спокойной совестью предлагало высокий административный пост Гауссу, с которым научные занятия были несовместимы, а потомки содрогаются при одной мысли, как жестоко пострадала бы от этого наука.

Деятельность Лобачевского в последнее десятилетие его жизни отличалась известными нам достоинствами, но по своей интенсивности она представляла только тень прошлого.

И в должности помощника попечителя учебного округа Лобачевский также не был формалистом. И когда приходилось давать выговоры, то старался делать их в простой и необидной форме. Г. Вагнер, в то время только что окончивший курс, состоял учителем дворянского нижегородского института. Директор этого заведения прислал какую-то жалобу Лобачевскому на Вагнера. Лобачевский пригласил молодого человека к себе обедать, увел его потом в кабинет и спокойным, ровным голосом сказал: «Конечно, вы только начинаете службу и вместе с тем вашу педагогическую деятельность и не можете судить о тяжести той ответственности, которую взяли на себя. Я уверен, что вы загладите свою ошибку». Совершенно иначе отнесся к той же, оказавшейся несправедливой жалобе попечитель: он встретил Вагнера грозным выговором, и когда тот начал оправдываться, то закричал на него по-казацки.

Лишенный кафедры Лобачевский читал лекции по своей геометрии перед избранной ученой публикой, и слышавшие их помнят, с каким глубокомыслием развивал он свои начала.

Лобачевский видел, что слушатели сознавали силу его ума, но в то же время не замечал, чтобы кто-нибудь отважился взять его тяжелое оружие и продолжать его труд.

За роковыми этими годами, по словам Вагнера, наступили для Лобачевского годы увядания; он начал слепнуть. Слепота развилась постепенно; сперва его светлый, глубокий взгляд немного затуманился; он плохо различал предметы, но стремился скрыть от других свою слепоту. Он ходил, устремив вдаль свой тусклый взгляд, и старался высоко и прямо держать свою седую голову.

Профессор Васильев говорит: «Уважение равно относилось и к Лобачевскому-ректору, и к Лобачевскому-помощнику попечителя, „Велизарию“, как звали его в это время, приходящему на университетские экзамены». Другую картину рисует нам Вагнер. «Прежде, когда Лобачевский входил в университетскую актовую залу, все почтительно шли ему навстречу, все торопились выказать ему всеобщее уважение; теперь он входил тихо, осторожно, опираясь на палку. Его вели под руки и все как бы избегали его; он как-то беспомощно улыбался, стыдясь своего положения, как бы извиняясь за него». Как видно, он не рассчитывал на великодушие людей и имел на то полное основание. Находились люди, смеявшиеся над тем, что Лобачевский слепым является на экзамены; они не могли понять, какой глубокий интерес к людям и положению науки в отечестве руководил Лобачевским в те минуты, когда его подводили к столу, усаживали в кресло, и он слушал экзаменующихся, тихо и вдумчиво поправлял их ответы. Одни смеялись над тем, что жена Лобачевского часто вводила его в профессорскую залу, другие находили смешной его подпись на официальных бумагах. Теперь он был развенчанный король, над которым издевались. К тому же, как мы видели, домашняя жизнь Лобачевского представляла также мало утешительного: его любимого старшего сына не было на свете, семейная жизнь старшей дочери сложилась неудачно, ни один из оставшихся в живых сыновей не обнаруживал ни малейшего влечения к науке. Домашние в длинные зимние вечера забавляли его игрой в лото с выпуклыми цифрами.

Конечно, ничто не в состоянии дать счастья в годы разрушения сил, но лучшие условия могут смягчить и это горе. Мы невольно вспоминаем последние годы слепца Эйлера и сраженного тяжкой болезнью современника Лобачевского, астронома Струве: они угасали, окруженные просвещенными членами семьи и друзьями, понимавшими значение их открытий в науке. Близкие люди продолжали их труд и, вовремя напоминая им о сделанных ими заслугах и о будущности их открытий, поддерживали ту веру, которой был лишен Лобачевский. Не видя вокруг себя людей, проникнутых его идеями, Лобачевский думал, что эти идеи погибнут вместе с ним.

Умирая, он произнес с горечью: «И человек родился, чтобы умереть». Его не стало 12 февраля 1856 года. За год до своей смерти он участвовал, насколько мог, в пятидесятилетнем юбилее Казанского университета и издал к этому времени французский перевод своего учения о геометрии, которое назвал пангеометрией: оно напечатано в сборнике, изданном по случаю пятидесятилетнего юбилея Казанского университета. Незадолго до смерти Лобачевский, с трудом надев полную форму, представлялся министру народного просвещения Норову. И это было последним усилием исполнить долг службы…

Тяжело становится следить шаг за шагом за разрушением замечательного человека и описывать испытываемые им страдания от сознания нашей общей беспомощности. Отвернемся же от всего личного, бренного и повторим вместе с Фихте: «Нет, не оставляй нас, священный палладиум человечества, утешительная мысль, что каждая из наших работ и каждое из наших страданий доставит человечеству новое совершенство и новое наслаждение, что мы для него работаем и не напрасно работаем…»

Посмотрим теперь, в чем заключаются заслуги Лобачевского перед потомством.

Глава VII

Научная деятельность Лобачевского. – Из истории неевклидовой или воображаемой геометрии. – Участие Лобачевского в создании этой науки. – Различные, современные воззрения на будущность неевклидовой геометрии и отношение ее к евклидовой. – Параллель между Коперником и Лобачевским. – Следствия из трудов Лобачевского для теории познавания. – Работы Лобачевского по чистой математике, физике и астрономии.

Происхождение воображаемой, или неевклидовой, геометрии ведет свое начало от постулата Евклида, с которым все мы встречаемся в курсе элементарной геометрии. При занятиях геометрией в детстве нас удивляет обыкновенно не сам постулат, принятый без доказательства, а заявление учителя, что все попытки доказать его до сих пор оставались безуспешными.

Во-первых, нам представляется очевидным, что перпендикуляр и наклонная при достаточном продолжении пересекутся, а во-вторых, это кажется так легко доказать. И трудно найти человека, который бы учился геометрии и никогда не пробовал доказать постулат Евклида. Этому, можно сказать, соблазну одинаково подвержены люди талантливые и бездарные, с той только разницей, что первые скоро убеждаются в несостоятельности своих доказательств, а последние упорствуют в своем мнении. Отсюда бесчисленное множество попыток доказать упомянутый постулат.

На этом постулате, как известно, построена теория параллельных линий, на основании которой доказывается теорема Фалеса о равенстве суммы углов треугольника двум прямым углам. Если бы можно было, не прибегая к теории параллельных, доказать, что сумма углов треугольника равна двум прямым, то из этой теоремы можно было бы вывести доказательства постулата Евклида, и в таком случае вся элементарная геометрия была бы наукой строго дедуктивной.

Из истории геометрии нам известно, что один персидский математик, живший в середине XIII века, первый обратил внимание на теорему Фалеса и старался доказать ее, не пользуясь теорией параллельных. В основе этого доказательства, как и во всех последующих, легко было усмотреть безмолвное допущение того же постулата Евклида. Из бесчисленного множества последующих попыток такого рода заслуживают внимания только труды Лежандра, который почти полвека занимался этим вопросом.

Лежандр стремился доказать, что сумма углов треугольника не может быть ни более, ни менее двух прямых; из этого, конечно, следовало бы, что она должна быть равна двум прямым. В настоящее время доказательство Лежандра признано несостоятельным. Как бы то ни было, не достигнув главной своей цели, Лежандр многое сделал для изложения геометрии Евклида в смысле приспособления ее к требованиям нового времени, и элементарная геометрия в том виде, в каком проходят ее теперь, со всеми ее достоинствами и недостатками, принадлежит Лежандру.

Итальянец-иезуит Саккери в 1733 году в своих исследованиях приближался к идеям Лобачевского, то есть готов был отвергнуть постулат Евклида, но не решился этого высказать, а стремился во что бы то ни стало доказать его, и конечно, так же безуспешно.

В конце прошлого столетия в Германии гениальный Гаусс в 1792 году впервые задал себе смелый вопрос: что произойдет с геометрией, если отвергнуть постулат Евклида? Этот вопрос родился, можно сказать, вместе с Лобачевским, который ответил на него созданием своей воображаемой геометрии. Здесь представляется нам решить, возник ли этот вопрос самостоятельно в уме нашего Лобачевского, или его возбудил Бартельс, сообщив даровитому ученику мысль друга своего Гаусса, с которым до самого отъезда в Россию он поддерживал деятельные личные отношения. Некоторые современные русские математики, побуждаемые, вероятно, наилучшими чувствами, стремятся доказать, что мысль Гаусса возникла в уме Лобачевского совершенно самостоятельно. Доказать это невозможно; всем известно письмо Гаусса, относящееся к 1799 году, в котором он говорит: «Можно построить геометрию, для которой не имеет места аксиома о параллельных линиях».

Сошлемся на слова казанского профессора Васильева, доказавшего свое глубокое уважение к заслугам и памяти Лобачевского; говоря о близких отношениях Бартельса с Гауссом, он замечает:

«Нельзя считать поэтому слишком рискованным предположение, что Гаусс делился своими мыслями по вопросу о теории параллельных со своим учителем и другом Бартельсом. Мог ли, с другой стороны, Бартельс не сообщить о смелых взглядах Гаусса по одному из основных вопросов геометрии своему пытливому и талантливому казанскому ученику?» Разумеется, не мог.

Но умаляет ли все это заслуги Лобачевского? Конечно, нет.

Труды Лежандра, о которых мы упоминали, вышли в 1794 году. Они не удовлетворили, но оживили интерес к теории параллельных, и нам известно, что в первое двадцатипятилетие нашего столетия беспрестанно появлялись сочинения, относящиеся к теории параллельных. По словам профессора Васильева, многие из них и до сих пор сохранились в библиотеке Казанского университета и, как достоверно известно, были приобретены самим Лобачевским.