ональны.
Четвертая же разновидность, или степень, родства сильнее связана с темой этой книги: следует найти отношение сфер, вписанных в тела, к сферам, описанным вокруг них, и рассчитать гармонические отношения, которые приблизительно их описывают. Ведь лишь у тетраэдра диаметр вписанной сферы рационален по отношению к описанной сфере, то есть составляет одну треть ее. Но в кубическом брачном союзе отношение (оно там единственно) рационально лишь в квадрате. Ибо диаметр вписанной сферы относится к диаметру описанной как квадратный корень отношения 1:3. А если составить отношения друг с другом, то отношения тетраэдральных сфер составляет квадрат отношения кубических сфер. В додекаэдрическом брачном союзе отношение опять же единственно, однако иррационально и чуть больше 4:5. Поэтому отношение сфер куба и октаэдра характеризуется следующими консонансами: оно 1:2 (чуть больше) и 3:5 (чуть меньше). А отношение додекаэдрических сфер приблизительно описывается консонансами 4:5 и 5:6 (чуть больше) и 3:4 и 5:8 (чуть меньше).
Но если по некоторым причинам 1:2 и 1:3 приписаны кубу, отношение сфер куба к отношению сфер тетраэдра будет таким же, как отношение консонансов 1:2 и 1:3, которые приписывались кубу, к 1:4 и 1:9, которые следует приписать тетраэдру, если пользоваться этой пропорцией. Ведь эти отношения также представляют собой квадраты этих консонансов. А поскольку 1:9 – не гармонический консонанс, его место в тетраэдре занимает ближайшее отношение 1:8. Однако, согласно этой пропорции, додекаэдрическому брачному союзу соответствуют приблизительно 4:5 и 3:4. Ведь подобно тому, как отношение сфер куба приблизительно равно кубу додекаэдрического отношения, кубические консонансы 1:2 и 2:3 примерно равны кубам консонансов 4:5 и 3:4. Ведь 4:5 в кубе равно 64:125, а 1:2 равно 64:128. Так же и 3:4 в кубе равно 27:64, а 1:3 равно 27:81.
В первую очередь моим читателям следует знать, что древние астрономические гипотезы Птолемея в том виде, в каком они изложены в «Новой теории планет» (Theoricae Novae Planetarum) Пурбаха, а также у других авторов кратких пособий, следует исключить из нашей дискуссии и начисто забыть, ибо они не передают ни истинного положения небесных тел в космосе, ни организации их движения.
Модели Птолемея, Коперника и Тихо Браге применительно к благо-приятным и неблагоприятным для здоровья периодам, согласным с положением планет. Раскрашенная гравюра из книги «Чудесный мир» (Mundi mirabilis) Иоганна Зана, математика и изобретателя. 1696 год.
Я не могу поступить иначе, кроме как полностью заменить эти гипотезы одной лишь теорией Коперника и по возможности убедить всех в ее истинности, но поскольку для большинства людей образованных она еще в новинку и они по большей части считают нелепицей, что Земля – это одна из планет, которые движутся среди звезд вокруг неподвижного Солнца, те, кого поражает новизна этого мнения, должны знать, что подобные рассуждения о гармониях возможны и на основании теории Тихо Браге, поскольку этот автор придерживается тех же взглядов, что и Коперник, во всем, что касается положения небесных тел и расчета их движения, и лишь переносит годичное продвижение Земли по Копернику на всю систему планетарных сфер и на Солнце, которое, по мнению обоих авторов, находится в центре этой системы. Ведь и при переносе движений остается верным то, что у Браге в любой момент Земля занимает то же место, какое отводит ей Коперник, если не в царстве неподвижных звезд, огромном и неизмеримом, то по крайней мере в системе планетного мира. Как тот, кто чертит круг на бумаге, заставляет вращаться пишущую ножку циркуля, так и тот, кто закрепил бумагу или доску на вращающемся столе, рисует такой же круг неподвижной ножкой циркуля или пером; подобным же образом и в случае Коперника Земля в своем подлинном движении описывает круг посередине между такими же кругами Марса с наружной стороны и Венеры с внутренней; а в случае Тихо Браге вся планетная система (в пределах которой находятся и остальные круги Марса и Венеры) вращается, словно столешница на оси, а неподвижная Земля – это словно бы перо, рисующее круг на этой столешнице между кругами Марса и Венеры; и из такого движения системы следует, что Земля в ее пределах, хотя и остается неподвижной, описывает точно такой же круг вокруг Солнца на полпути между кругами Марса и Венеры, какой у Коперника она описывает при подлинном движении при покоящейся системе. Поэтому, поскольку рассуждения о гармониях касаются эксцентрического движения планет, каким оно видится с Солнца, легко понять, что если наблюдатель находится на Солнце, которое движется как угодно, с его точки зрения Земля, пусть даже она и покоится (если согласиться с Браге), опишет годичный круг на полпути между упомянутыми планетами и за среднее время. Следовательно, если найдется человек столь недалекий, что ему не удастся уловить закономерности движения Земли среди звезд, он все равно получит удовольствие от превосходного спектакля, который поставили самые что ни на есть божественные силы, если он прибавит все, что слышит о ежедневном продвижении Земли по эксцентрике, к рисунку планет относительно Солнца, – к тому самому рисунку, который предлагает Тихо Браге, с неподвижной Землей.
И тем не менее у последователей самосской философии нет никаких причин из жадности утаивать подобную чарующую картину от подобных людей, поскольку их радость была бы во многом более совершенной, если бы они согласились с гипотезой, что Солнце неподвижно, а Земля движется, ведь тогда зрелище достигло бы высшего совершенства.
Поэтому, во-первых [I], пусть мои читатели знают, что сегодня все астрономы единодушно уверены, что все планеты вращаются вокруг Солнца, за исключением Луны, поскольку у нее одной центром вращения служит Земля: величина лунной сферы или орбиты недостаточно велика, чтобы отразить ее на этой схеме в должном масштабе относительно других. Поэтому к остальным пяти планетам прибавлена шестая, Земля, описывающая шестой круг относительно Солнца либо при своем подлинном движении вокруг покоящегося Солнца, либо при движении всей планетной системы, когда сама она неподвижна.
Система Коперника. Рисунок Томаса Диггса, XVII век.
Расчет подлинной орбиты Марса по относительному положению Земли, который выполнил Кеплер.
Во-вторых [II], точно так же несомненно, что все планеты эксцентричны, то есть расстояние от них до Солнца непостоянно и меняется так, что в одной точке описываемого ими круга они находятся от Солнца дальше всего, а в противоположной точке – ближе всего. На приведенной схеме для каждой отдельной планеты начерчено три круга, ни один из которых не соответствует эксцентрической траектории самой планеты, однако средний круг, то есть, например, ВЕ в случае Марса, равен большему диаметру эксцентрической орбиты. Однако сама орбита, скажем, AD, касается AF, верхней из трех окружностей, в одной точке А, а нижний круг CD – в противоположной точке D. Круг GH, отмеченный пунктиром и проходящий через центр Солнца, показывает траекторию Солнца согласно Тихо Браге. И если Солнце проходит по этой траектории, то абсолютно все точки планетной системы в целом, представленной на схеме, пойдут каждая в своем ритме и по своей траектории. А если одна ее точка (а именно центр Солнца) помещена в одну точку его орбиты, как здесь в самом низу, абсолютно все и каждая точка системы окажутся в нижней части своего круга. Однако из-за недостатка места все три круга Венеры сведены в один, в противоположность моим первоначальным намерениям.
В-третьих [III], пусть читатель вспомнит, что в моей «Тайне мироздания», которую я опубликовал двадцать два года назад, говорится, что мудрейший Создатель взял количество планет на круглых орбитах вокруг Солнца равным числу пяти правильных геометрических тел, о чем Евклид много веков назад написал книгу, названную «Начала», где это выводится из целого ряда теорем. А во второй книге этого труда доказано, что больше правильных тел быть не может, то есть что из правильных многоугольников невозможно собрать больше пяти геометрических тел.
В-четвертых [IV], что касается отношения орбит планет, то отношение между двумя соседними орбитами всегда таково, что легко видеть, что все и каждая из них приближается к единственному отношению сфер одного из пяти правильных тел – а именно сферы описанной к сфере вписанной (в тело). Тем не менее эти величины не в точности равны, как я когда-то осмелился предположить из соображений полного совершенства астрономии. Дело в том, что когда я закончил расчеты интервалов на основании наблюдений Браге, выяснилось вот что: если углы куба касаются внутреннего круга Сатурна, центры его граней приблизительно попадают на средний круг Юпитера, а если углы тетраэдра касаются внутреннего круга Юпитера, центры его граней приблизительно попадают на внешний круг Марса; таким же образом, если углы октаэдра касаются любого круга Венеры (поскольку общий промежуток между ними был очень сильно сокращен), центры граней октаэдра проникают глубоко в пределы внешнего круга Меркурия, однако же не доходят до среднего круга Меркурия; наконец, ближе всех к отношениям додекаэдрических и икосаэдрических сфер (эти отношения равны между собой) оказываются отношения промежутков между кругами Марса и Земли, а также Земли и Венеры, и эти промежутки так же равны, если считать от внутреннего круга Марса до среднего круга Земли, но от среднего круга Земли до среднего круга Венеры. Ибо расстояние среднего круга Земли – это среднее пропорциональное между наименьшим расстоянием Марса и средним расстоянием Венеры. Но эти два отношения между кругами планет все равно больше отношений двух пар сфер в геометрических телах, так что центры граней додекаэдра не касаются внешнего круга Венеры; более того, этот зазор невозможно заполнить полудиаметром лунной сферы, прибавив его сверху к наибольшему расстоянию Земли и вычтя снизу из наименьшего расстояния таковой. Однако я нахожу и другое отношение фигур: а именно, если я возьму наращенный додекаэдр, который называю