На плечах гигантов — страница 34 из 39

S1 и S2.

Обсудим процесс переноса энергии излучением из S2 в S1, если мы находимся в некоторой системе отсчета К0, не обладающей ускорением. Будем считать, что в тот момент, когда энергия излучения Е2 переносится из S2 в S1, система К’ обладает относительно системы К0 нулевой скоростью. Лучи достигнут системы S1 спустя время h/с (в первом приближении). В этот момент система S1 обладает относительно К0 скоростью h/с = v. Таким образом, согласно обычной теории относительности, достигающее S1 излучение имеет не энергию Е2, а большую энергию Е1 которая в первом приближении связана с Е2 соотношением[13]:


(1)


Согласно сделанному нами предположению, точно такое же соотношение справедливо и в том случае, когда рассматриваемый процесс протекает в системе К – неускоренной, но находящейся в гравитационном поле. В этом случае мы можем заменить γh потенциалом Ф гравитационного поля в точке, где находится S2, если произвольная постоянная потенциала Ф в точке, где находится S1, приравнивается нулю. Таким образом, получаем:


(1а)


Последнее есть закон сохранения энергии для рассматриваемого процесса. Энергия Е1, приходящая в S1 больше, чем измеренная такими же приборами энергия Е2, которую отдает система в S2, на величину потенциальной энергии массы Е2/с2 в поле тяжести. Таким образом, для выполнения закона сохранения энергии нужно к энергии Е перед ее испусканием из S2 прибавить потенциальную энергию, которая соответствует (тяжелой) массе Е/с2 в поле тяжести. Следовательно, наше допущение об эквивалентности систем отсчета К и К’ устраняет изложенную в начале этого параграфа трудность, чего не могла сделать обычная теория относительности.

Смысл полученного результата становится особенно ясным при рассмотрении следующего кругового процесса.

1. Энергия Е, измеренная в S2, посылается в форме излучения из S2 в S1, где, согласно только что полученному результату, поглощается энергия Е × (1 + γh/с2), измеренная в S1.

2. Тело W с массой М падает из S2 в S1, и при этом совершается работа Mγh.

3. Энергия Е из системы S1 переносится на тело W, когда оно находится в S1. Благодаря этому изменяется тяжелая масса М, и пусть ее новое значение равно М’.

4. Тело W снова поднимается в S2, и при этом затрачивается работа М’ γh.

5. Энергия Е переносится с тела W на систему S2.

В результате такого кругового процесса система S1 приобрела энергию Е (γh/c2) и системой передана энергия М’γh – Mγh в форме механической работы. Следовательно, по закону сохранения энергии должно выполняться следующее соотношение:



или

М – М’ = Е/c2. (1б)

Окончательно получаем, что приращение тяжелой массы есть Е/c2. Другими словами, оно равно тому приращению инертной массы, которое следует из теории относительности.

Еще более естественным образом этот результат вытекает из эквивалентности системы отсчета К и К’. Согласно этой эквивалентности, тяжелая масса, определенная относительно К, в точности равна инертной массе, определенной относительно К’. Таким образом, энергия должна обладать тяжелой массой, равной ее инертной массе. Так, если с помощью пружинных весов в системе отсчета К’ взвесить массу М0, то эти весы (из-за инертности М0) покажут кажущийся вес М0γ. Если сообщить энергию Е массе М0, то, согласно предположению об инерции энергии, пружинные весы покажут (М0 + Е/c2) γ.

Согласно нашему основному предположению, то же самое должно наступить и при проведении опыта в системе отсчета К, т. е. в поле тяготения.

§ 3. Время и скорость света в поле тяжести

Пусть излучение, испускаемое в равномерно ускоренной системе отсчета К’ из S2 по направлению к S1, имеет относительно находящихся в S2 часов частоту v2. Тогда по прибытии в S1 это излучение имеет относительно находящихся там точно таких же часов частоту уже не v2, а большую частоту v1, которая в первом приближении равна


(2)


Действительно, снова вводя неускоренную систему отсчета К0, относительно которой система отсчета К’ в момент испускания света имела нулевую скорость, то S1 будет иметь относительно К0 в момент прибытия излучения в S1 скорость γ(h/с), откуда в силу принципа Допплера непосредственно получается соотношение (2).

Учитывая сделанное нами предположение об эквивалентности систем отсчета К и К’, полученное выражение справедливо и для покоящейся координатной системы К, в которой существует однородное поле тяжести, в том случае, когда в этой системе происходит описанный выше перенос энергии излучения.

Окончательно получаем, что луч света, испускаемый в области с определенным потенциалом тяготения из S2 и имеющий при его испускании частоту v2, измеренную часами, находящимися в S2, обладает при его прибытии в S1 другой частотой v1, если последняя измеряется с помощью точно таких же часов, находящихся в S1. Заменим γh через потенциал тяготения Ф, взятый в S2 по отношению к S1, потенциал которой принят равным нулю. Далее, что соотношение, полученное нами для однородного гравитационного поля, справедливо также и для полей другого вида.

В таком случае


(2a)


Полученный результат (справедливый, напомним, согласно своему выводу, в первом приближении) прежде всего можно применить следующим образом. Пусть v0 – частота некоторого элементарного источника света, которая измеряется с помощью часов U, находящихся в том же месте, где и сам источник. Эта частота не зависит от расположения источника света вместе с часами. Теперь представим, что источник и часы размещены, к примеру, на поверхности Солнца (там находится наша система S2). Часть испущенного света доходит до Земли (S1), где мы часами U точно такой же конструкции, что и упомянутые выше, измеряем частоту v приходящего света. Следовательно, согласно соотношению (2а), имеем



Здесь Ф – (отрицательная) разность гравитационных потенциалов между поверхностью Солнца и поверхностью Земли.

Согласно нашим представлениям, спектральные линии солнечного света должны немного сместиться по сравнению с соответствующими спектральными линиями земных источников света в красную область спектра, а именно, на относительную величину



Это смещение можно было бы измерить, если бы были точно известны условия, при которых испускается солнечный свет. Но из-за того, что причины другого рода (такие как давление и температура) также влияют на положение центра тяжести спектральных линий, трудно установить, действительно ли существует выведенное выше соотношение, в котором учитывается влияние гравитационного потенциала[14].


Можно ли обратить время вспять? Похоже, в пользу этого предположения есть лишь несколько доводов, а против – вся Вселенная.


При поверхностном рассмотрении может показаться, что соотношения (2) или (2а) не имеют смысла. Может ли быть, чтобы при непрерывном испускании света из S2 он прибывал S1 другой частотой, чем свет, вышедший из S2? Тем не менее, ответ на этот вопрос прост. Дело в том, что мы не можем рассматривать v2 и v1 просто как частоты (т. е. как числа периодов в секунду), потому что мы еще не установили времени в системе отсчета К. Величина v2 обозначает число периодов, отнесенное к единице времени часов U в S2, a v1 – число периодов, отнесенное к единице времени точно таких же часов U в S1. У нас нет никаких оснований допускать, что часы, которые расположены в точках с различными гравитационными потенциалами, должны рассматриваться как одинаково идущие. Наоборот, мы обязательно должны определить время в системе отсчета