На плечах гигантов — страница 36 из 39


§ 2. Об основаниях, которые подсказывают расширение постулата относительности

Классической механике и в неменьшей степени специальной теории относительности свойственен некоторый теоретико-познавательный недостаток, который, пожалуй, впервые был ясно отмечен Эрнстом Махом. Мы поясним его суть на следующем примере. Пусть два жидких тела одинаковой величины и состава свободно парят в пространстве на таком большом расстоянии друг от друга (и от всех прочих масс), что должны приниматься во внимание только те гравитационные силы, с которыми действуют друг на друга части одного и того же тела. Пусть расстояние между этими телами остается постоянным. Кроме того, будем считать, что не происходит перемещения друг относительно друга частей одного и того же тела. При этом пусть каждая масса, рассматриваемая наблюдателем, покоящимся относительно другой массы, вращается вокруг линии, соединяющей массы с постоянной угловой скоростью (это относительное движение обеих масс всегда возможно установить). Наконец, представим себе, что поверхности обоих тел (S1 и S2) измерены с помощью масштабов (покоящихся относительно этих тел). Будем считать, что согласно результатам измерений поверхность S1 представляет собой сферу, а поверхность S2 – эллипсоид вращения. Далее возникает вопрос: по какой причине тела S1 и S2 ведут себя по-разному? Ответ на этот вопрос может быть признан удовлетворительным с теоретико-познавательной точки зрения только тогда, когда обстоятельство, указанное в качестве причины, является наблюдаемым опытным фактом[15]. Дело в том, что принцип причинности только тогда имеет смысл суждения о явлениях в мире опыта, когда в качестве причин и следствий в конечном итоге оказываются лишь собственно наблюдаемые факты.

Механика Ньютона не дает удовлетворительного ответа на поставленный выше вопрос, а говорит следующее. Законы механики справедливы для пространства R1, относительно которого тело S1 находится в покое, но несправедливы для пространства R2, относительно которого находится в покое тело S2. Однако вводимое при этом галилеево пространство R1 (и движение по отношению к этому пространству), по сути, является фиктивной причиной, а вовсе не наблюдаемым фактом. Другими словами, очевидно, что механика Ньютона в рассматриваемом случае удовлетворяет требованию причинности не по существу, но лишь кажущимся образом, возлагая ответственность за наблюдаемое различное поведение тел S1 и S2 на фиктивную причину – пространство R1.

Удовлетворительным ответом на рассматриваемый вопрос может быть только такой: физическая система, состоящая из тел S1 и S2, сама по себе не дает возможности указать причину, с помощью которой можно было бы объяснить различное поведение тел S1 и S2. Следовательно, причина должна лежать вне этой системы. Из последнего утверждения, в свою очередь, следует вывод, что общие законы движения, которые, в частности, определяют форму тел S1 и S2, должны быть таковы, чтобы механические свойства тел S1 и S2 в значительной степени обусловливались отдаленными массами, которые мы не включили в рассматриваемую систему. Эти отдаленные массы (и их относительные движения по отношению к рассматриваемым телам) должны тогда рассматриваться как носители принципиально наблюдаемых причин различного поведения рассматриваемых тел S1 и S2, и они становятся на место фиктивной причины R1. Из всех возможных пространств R1, R2 и т. д., движущихся любым образом относительно друг друга, ни одному из них не должно изначально отдаваться предпочтение, если только мы хотим устранить указанный теоретико-познавательный недостаток. Законы физики должны быть составлены так, чтобы они были справедливы для произвольно движущихся координатных систем. Таким образом мы приходим к расширению постулата относительности.

Помимо рассмотренного важнейшего теоретико-познавательного аргумента, в пользу расширения теории относительности свидетельствует и еще один хорошо известный физический факт. Пусть К – галилеева координатная система, т. е. такая, относительно которой (по крайней мере, в рассматриваемой четырехмерной области) некоторая масса, достаточно удаленная от других, движется прямолинейно и равномерно. Пусть К’ – вторая координатная система, которая относительно К движется равномерно ускоренно. Тогда достаточно изолированная от других масса совершает относительно К’ ускоренное движение, причем ни ускорение, ни направление этого ускорения не зависят от химического состава и физического состояния этой массы.

Может ли наблюдатель, который находится в состоянии покоя относительно координатной системы К’, из всего вышесказанного заключить, что он находится в «действительно» ускоренной, координатной системе? Ответ на этот вопрос должен быть отрицательным, потому что только что указанное поведение масс, свободно движущихся относительно К’, может быть столь же хорошо объяснено и другим, следующим образом. Координатная система К’ не обладает ускорением, однако в рассматриваемой пространственно-временной области имеется гравитационное поле, которое и вызывает ускоренное движение тел относительно системы К’. Объяснение такого рода становится возможным благодаря тому, что из опыта нам известно о существовании силового поля (а именно: гравитационного поля), обладающего замечательным свойством сообщать всем телам одно и то же ускорение[16]. Механическое поведение тел относительно координатной системы К’ будет таким же, какое обнаруживается на опыте по отношению к системам, которые мы привыкли рассматривать как «покоящиеся» или как «законные»; поэтому и с физической точки зрения естественно считать, что обе системы К’ и К с одинаковым правом могут рассматриваться как «покоящиеся». Другими словами, обе системы равноправны в качестве координатных систем для физического описания процессов.


Теория относительности опирается на постоянство скорости света (300 000 километров в секунду). За год свет проходит около 10 триллионов километров. Это расстояние называется световым годом. Он равен 63  241 астрономической единице (1 а.  е.  – это расстояние от Земли до Солнца). От нас до Плутона 49,3 астрономической единицы, а до ближайшей звезды – Альфа Центавра – 4,3 светового года. До границы нашей галактики Млечный Путь – 50 тысяч световых лет, а до ближайшей галактики Андромеды – 2,3 миллиона световых лет. Большинство звезд, которые видно невооруженным глазом, находятся от нас в пределах 1000 световых лет.


Из указанных соображений становится ясно, что построение общей теории относительности должно одновременно привести и к построению теории тяготения, потому что гравитационное поле можно «создать» простым изменением координатной системы. Кроме того, очевидно, что принцип постоянства скорости света в пустоте должен быть изменен, ибо легко убедиться в том, что траектория луча света относительно системы К’ в общем случае должна быть кривой, если свет относительно системы К распространяется прямолинейно и с определенной постоянной скоростью.

§ 3. Пространственно-временной континуум. Требование общей ковариантности уравнений, выражающих общие законы природы

Так же как и в специальной теории относительности, в классической механике пространственные и временные координаты содержат непосредственный физический смысл. Когда говорят, что точечное событие имеет координату x1, то это означает следующее. Построенную по правилам евклидовой геометрии при помощи твердых стержней проекцию точечного события на ось X1 получают, откладывая определенную линейку – единичный масштаб – х1 раз от начала координат по направлению оси X1. Когда говорят, что точка имеет координату х4 = t, то это означает, что по часам (некоторому эталону времени), покоящимся относительно координатной системы, пространственно (практически) совпадающим с точечным событием и выверенным по определенным правилам, прошло х4 = t периодов, когда наступило точечное событие10.

Такое понимание пространства и времени всегда представлялось взору физиков, хотя, быть может, большей частью и бессознательно. Это ясно видно из той роли, какую играют эти понятия в физических измерениях. Такое толкование читатель должен был положить также в основу второго рассуждения последнего параграфа для того, чтобы придать ему некоторый смысл. Однако мы покажем теперь, что это толкование нужно отбросить и заменить более общим, чтобы последовательно провести общий постулат относительности, при условии, что специальная теория относительности сохраняется в предельном случае отсутствия гравитационного поля.

Введем в пространстве, свободном от гравитационных полей, галилееву координатную систему К(х, у, z, t) и, кроме того, координатную систему К’(х’, у’, z’, t’), которая равномерно вращается относительно К. Пусть начала координат обеих систем, так же как и их оси Z, все время совпадают друг с другом. Покажем, что вышеприведенные определения, касающиеся физического смысла длин и времен, не пригодны для изучения пространства и времени в системе