На плечах гигантов — страница 37 из 39

К’.

Из соображений симметрии очевидно, что окружность в координатной плоскости XY системы К с центром в начале координат может в то же время рассматриваться как окружность в координатной плоскости X’Y’ системы К’. Теперь представим себе, что длина и диаметр этой окружности измерены при помощи единичного масштаба (бесконечно малого по сравнению с радиусом) и затем взято отношение обоих результатов измерения. Если выполнить этот эксперимент с масштабом, покоящимся относительно галилеевой системы К, то в качестве частного получится число π. Результатом измерения, выполненного с масштабом, покоящимся относительно системы К’, будет число большее π. В этом легко убедиться, если судить о процессе измерения из «покоящейся» системы К и принять во внимание, что масштаб, приложенный по касательной к окружности, претерпевает лоренцево сокращение, а радиально приложенный масштаб не изменяется. Поэтому относительно системы К’ геометрия Евклида оказывается несправедливой. Установленное нами ранее представление о координатах, которое предполагает применимость евклидовой геометрии, оказывается непригодным в системе К’. Также невозможным оказывается и введение в К’ удовлетворяющего физическим требованиям времени, которое показывали бы одинаковые часы, покоящиеся относительно К’. Для того чтобы в этом убедиться, представим себе, что в начале координат и где-нибудь на окружности установлено двое одинаковых часов, наблюдаемых из «покоящейся» системы К. Далее, согласно известному выводу специальной теории относительности, наблюдение по часам в системе К дает, что часы, установленные на окружности, идут медленнее часов, которые помещены в начале координат, поскольку первые движутся, а последние нет. Наблюдатель, который находится в общем начале координат и который способен, пользуясь светом, наблюдать часы, находящиеся на окружности, обнаружит, что часы, установленные на окружности, идут медленнее, чем часы, установленные рядом с ним. Поскольку наблюдатель не решится считать скорость света на пройденном светом пути явной функцией времени, то он объяснит свое наблюдение тем, что часы на окружности «действительно» идут медленнее часов, установленных в начале координат. Таким образом, он будет вынужден дать времени такое определение, которое указывало бы, что скорость хода часов зависит от места.


Три модели будущего Вселенной: инфляция, расширение, сжатие.


ВВЕРХУ

Вселенная вверху пережила период внезапного расширения, но затем начала схлопываться, что в конце концов приведет к Большому сжатию в массивную черную дыру.

В СЕРЕДИНЕ

Вселенная, подобная нашей: в ней наблюдается второе расширение с ускорением, которое может продолжаться, пока вселенная не превратится в холодную безжизненную пустоту или, как в предыдущем случае, не образует черную дыру.

ВНИЗУ

Вселенная, которая начинает расширяться на самых первых этапах существования и продолжает этот процесс, так и не создав ни галактик, ни звезд. Оранжевый круг на каждой иллюстрации отмечает момент, когда происходит основное расширение с ускорением.


Итак, мы приходим к следующему выводу: в общей теории относительности пространственные и временные величины не могут быть определены так, чтобы разности пространственных координат могли быть измерены непосредственно единичным масштабом, а разности временных – посредством стандартных часов.

Прежний способ, заключавшийся в определенном построении системы координат в пространственно-временном континууме, оказывается неприменимым. Представляется, что не существует пути, который позволил бы приспособить к четырехмерному миру такие координатные системы, чтобы с помощью их можно было бы ожидать особенно простой формулировки законов природы. Не остается ничего другого, как признать все мыслимые координатные системы принципиально равноправными для описания природы. Последнее равносильно следующему требованию.

Общие законы природы должны быть выражены через уравнения, справедливые во всех координатных системах, т. е. эти уравнения должны быть ковариантными относительно любых подстановок (общековариантными).

Физика, удовлетворяющая этому постулату, удовлетворит и общему постулату относительности, потому что в совокупности всех подстановок найдутся такие, которые соответствуют всем относительным движениям (трехмерных) координатных систем. Тот факт, что это требование общей ковариантности, отнимающее у пространства и времени последний остаток физической предметности, является естественным, видно из следующего соображения. Все наши пространственно-временные констатации всегда сводятся к установлению пространственно-временных совпадений. Так, если события состояли только в движении материальных точек, то в конце концов наблюдались бы только встречи двух или нескольких таких точек. Результаты наших измерений также являются не чем иным, как констатацией подобных встреч между материальными точками наших масштабов с другими материальными точками и соответственно совпадений между часовыми стрелками, точками циферблата и рассматриваемыми точечными событиями, происходящими в том же месте и в то же время.


Кротовые норы соединяют разные области пространства и  времени. Теоретически они опасны тем, что открываются совсем ненадолго, а затем закрываются, отрезав путь назад.


Координатная система вводится только для более простого описания совокупности совпадений. Четыре пространственно-временные переменные х1, х2, х3, х4 сопоставляются с миром таким образом, чтобы каждому точечному событию соответствовала некоторая система значений переменных х1, … х4. Двум совпадающим точечным событиям соответствует одна и та же система значений переменных х1, … х4, т. е. совпадение характеризуется равенством координат. Вводя вместо переменных х1, … х4 любые четыре функции от х’1, … х’4 как новую координатную систему так, чтобы эти системы значений однозначно соответствовали друг другу, мы получим, что равенство соответствующих координат в новой системе тоже является выражением пространственно-временного совпадения двух точечных событий. Так как все наши физические опытные данные можно в конце концов свести к таким совпадениям, то мы не можем априори отдать предпочтение какой-то выборочной координатной системе перед всеми другими. Таким образом, мы приходим к требованию общей ковариантности.


Парадокс кротовых нор наталкивает на мысль, что если мы вернемся в прошлое, то сумеем изменить его, а следовательно, изменится и будущее. Что будет, если вернуться в  прошлое и  убить собственного деда до того, как он успеет зачать твоего отца или мать?


Вопросы космологии и общая теория относительности

Дифференциальное уравнение Пуассона имеет вид


(1)


В совокупности с уравнением движения материальной точки это уравнение не может полностью заменить теорию дальнодействия Ньютона. К ним необходимо добавить условие того, что потенциал φ в пространственной бесконечности стремится к определенному пределу. Схожим образом обстоит дело и в теории тяготения, которая следует из общего принципа относительности. Здесь также к дифференциальным уравнениям должны быть добавлены граничные условия на пространственной бесконечности, если мы на самом деле рассматриваем мир бесконечно протяженным в пространстве.

В задачах, связанных с планетной системой, выбираются эти граничные условия при допущении, что можно выбрать такую координатную систему, в которой все потенциалы тяготения gμν на пространственной бесконечности становятся постоянными. Но изначально совершенно не очевидно, что при рассмотрении более значительных областей Вселенной можно вводить те же самые граничные условия. Ниже изложим соображения, которые мы получили до настоящего времени по этому принципиально важному вопросу.

§ 1. Теория Ньютона

Граничное условие Ньютона в форме существования постоянного предела для φ в пространственной бесконечности ведет к тому, что плотность материи на бесконечности обращается в нуль. Действительно, пусть во Вселенной существует область, вокруг которой гравитационное поле материи, рассматриваемое в целом, обладает сферической симметрией (центр). Тогда из уравнения Пуассона следует, что средняя плотность ρ с увеличением расстояния r от центра должна стремиться к нулю быстрее, чем 1/r2, для того чтобы φ на бесконечности стремилось к некоторому пределу[17]. В этом смысле мир по Ньютону конечен, хотя может обладать бесконечно большой общей массой.

Из приведенного рассуждения прежде всего следует, что излучение, испускаемое небесными телами, частично покинет мир Ньютона по радиальному от центра направлению с тем, чтобы бесследно затеряться на бесконечности. Не может ли произойти то же с целым небесным телом? Едва ли можно отрицать этот факт, поскольку из предположения о существовании конечного предела для φ в пространственной бесконечности следует, что обладающее конечной кинетической энергией небесное тело может достичь пространственной бесконечности, преодолев ньютоновские силы притяжения. Согласно статистической механике, такие события должны происходить до тех пор, пока общая энергия звездной системы достаточно велика, чтобы – при переносе ее на одно небесное тело – последнее могло совершить путешествие на бесконечность, откуда оно никогда не сможет вернуться.

Можно было бы попытаться обойти эту своеобразную трудность, допустив, что указанный граничный потенциал имеет на бесконечности очень большое значение. Это было бы приемлемо, если бы изменение потенциала тяготения не определялось самим небесным телом. В действительности мы с неизбежностью приходим к заключению, что наличие значительных разностей потенциалов гравита