На суше и на море - 1971 — страница 134 из 140

Однако тем не менее мы до сих пор не отыскали сколько-нибудь убедительных следов космических пришельцев на Земле, не поймали искусственных радиосигналов инопланетных цивилизаций, не обнаружили никаких других проявлений деятельности разумных существ в космосе.

Можно, конечно, попытаться найти какие-то объяснения этому противоречию. Но они будут столь же гипотетическими, как и все то, что мы вообще знаем о других цивилизациях.


Живое и неживое

Итак, прямых фактов относительно существования инопланетных цивилизаций в нашем распоряжении пока нет.

Но не будем забывать, что нас интересуют не только космические, но и земные проблемы. И потому, принимая во внимание то, что говорилось о жизни во Вселенной, попытаемся обсудить главный вопрос: живое вещество — случайный, редкий вид материи или, может быть, одна из необходимых и распространенных ее форм?

Известный английский астроном Джемс Джинс, автор популярной в свое время космогонической гипотезы, утверждал, что жизнь — это плесень, возникающая на поверхности небесных тел. Джинс считал, что жизнь, живое вещество — это «отбросы» развития материи.

Так ли это?

От каких же фактов мы можем оттолкнуться в своих рассуждениях?

Факт номер один: на Земле живое вещество возникло из неживой, неорганической материи. Этот факт можно считать установленным достаточно твердо.

Факт номер два: неживая материя в зачаточной форме обладает свойством «отражения».

Способность «отражения» — одно из главных отличительных свойств живой материи. С развитием жизни от простейших форм до разумных существ материя достигает способности познавать окружающий мир. Ведь познание — это и есть процесс отражения внешнего мира в человеческом сознании.

В. И. Ленин отмечал, что в самом фундаменте здания материи можно «предполагать существование способности, сходной с ощущением», что «вся материя обладает свойством, по существу родственным с ощущением, свойством отражения».

Развитие науки полностью подтвердило это гениальное предвидение. Еще в 1935 г. замечательный советский физик С. И. Вавилов в одном из вариантов статьи, опубликованной затем в журнале «Под знаменем марксизма», писал: «Может случиться, что будущая физика включит как первичное простейшее явление «способность, сходную с ощущением» и на ее основе будет объяснять многое другое».

Утверждать, что это уже случилось, было бы, пожалуй, слишком смело. Но свойством отражения, присущим неорганической, неживой природе, современная наука и техника пользуются достаточно широко.

Примеры: магнитофон, на пленке которого «отражена» определенная мелодия, «память» электронно-вычислительных машин, запоминающие устройства автоматических космических станций, хранящие накопленную информацию и выдающие ее в нужный момент для передачи на Землю.

Но все это — примеры, для современного читателя довольно очевидные. Есть и менее очевидные…

Если бы неорганическая материя не обладала свойством отражения, мы, вероятно, так бы никогда ничего не узнали о явлениях природы, совершавшихся в прошлом. Они текли бы своей чередой, не оставляя абсолютно никаких следов в окружающем мире.

В действительности все обстоит несколько иначе. Если в физической системе происходит какой-либо процесс, он изменяет ее состояние. И в целом ряде случаев система как бы сохраняет в себе следы совершившегося.

К примеру, астрономическая наука располагает фактическими данными лишь о современном состоянии нашей Солнечной системы, наблюдать ее в прошлом мы не в силах. Поэтому может показаться, что история Солнечной системы навсегда ушла в тень веков и узнать ее абсолютно невозможно. Но это не так. Прошлое не бесследно кануло в вечность — оно нашло свое отражение в современном состоянии нашей планетной системы. Далеко не всякий путь развития мог привести ее к этому состоянию. Движение планет в одной плоскости и в одном направлении по почти круговым орбитам, деление планет на две группы: внутренних — небольших и внешних — гигантских — все это и есть неизгладимые следы прошлых процессов…

Или другой пример. Сейчас физики ведут интересные исследования следов космических лучей в слюдяных породах. Оказывается, космические частицы оставляют в слюде определенные следы (как и на фотоэмульсии). Эти следы можно обнаружить и таким путем выяснить, каковы были колебания космического излучения в прошлом.

В какой-то степени все это напоминает детектив. Криминалисты утверждают, что преступник всегда оставляет следы, прямые или косвенные. И по таким уликам опытный следователь может восстановить картину преступления.

Точно так же астрономы и физики, изучая современные состояния тех или иных объектов, зримые следы их предыстории, выясняют ход давным-давно совершившихся процессов…

Впрочем, сейчас нас интересует не столько методика астрономических исследований, сколько тот поразительный факт, что неживая, неорганическая материя обладает в зачаточной форме одним из свойств, которые наиболее характерны для живой материи. Ведь это означает, что неживая материя не такая уж неживая…

А ведь отражение не единственное общее свойство живого и неживого. Есть еще одно, если можно так выразиться, свойство «обучения», разумеется, в широком смысле этого слова.

Один из основоположников кибернетики, Н. Винер, определял «обучение» как способность учитывать предшествующий опыт. В мире живого «обучение» проявляется, например, в выработке рефлексов, условных и безусловных. Рефлекс — это определенный ответ организма на повторяющиеся внешние раздражители. В частности, в животном мире в результате естественного отбора и борьбы за существование закрепляются те рефлексы, которые биологически наиболее целесообразны, то есть обеспечивают данному виду наилучшие условия для выживания…

Но способностью учитывать предшествующий опыт, оказывается, обладает в зачаточной форме и неорганическая материя.

Пусть у нас имеются два, казалось бы, совершенно одинаковых объема газа с равным количеством частиц и одинаковой температурой. Если один из этих объемов получен путем сжатия некоторого большего объема, а другой — путем расширения меньшего, то дальнейшее поведение обеих систем будет коренным образом отличаться друг от друга.

Пожалуй, еще более убедителен такой пример. В пространстве движется тело под действием силы тяготения, скажем, ракета с выключенными двигателями. Достаточно знать три ее положения в пространстве, чтобы точно вычислить орбиту. Представьте себе, что две ракеты прошли через одну и ту же точку, но предшествовавшие точки были различными. Значит, и дальнейшее движение ракет после прохождения общей точки будет не одинаковым. Ракеты пойдут по разным орбитам.

Подобных примеров можно привести множество. В состоянии и поведении материальных систем неживой природы довольно часто заложено их прошлое, так сказать «исторический опыт». Конечно, это свойство еще нельзя назвать «обучением» в полном смысле слова. Более точно его можно было бы назвать «накоплением» или «аккумуляцией».

Стоит, между прочим, напомнить, что неорганические системы, создаваемые человеком, обладают способностью не только отражать, но и «обучаться». Сконструированы кибернетические машины, у которых можно вырабатывать «рефлексы». Уже существуют самообучающиеся машины, способные учитывать предыдущий опыт и вносить соответствующие коррективы в свои дальнейшие действия. Так, например, электронно-вычислительная машина, играя в шахматы, способна анализировать «сыгранные» ею партии и благодаря этому усиливать свою игру.

Между живой и неживой материей есть и еще одно сходство. Если говорить языком кибернетики, любой живой организм — самоуправляющая система.

Неорганическая природа свойством управления не обладает. Но в зачаточном состоянии мы обнаруживаем у некоторых неживых систем и это свойство. Оно проявляется в форме так называемой авторегуляции.

Яркий пример — наше Солнце. Термоядерные реакции, которые являются источником его энергии, протекают в центральной зоне. Этот «ядерный котел» со всех сторон окружен массами вещества, которое удерживается силами тяготения. Если интенсивность реакции почему-либо падает, зона немедленно сжимается. Это приводит к увеличению давления и температуры, и реакция ускоряется. Наоборот, если реакция развивается слишком бурно, избыточная энергия вызывает расширение окружающих слоев. И зона реакции охлаждается до тех пор, пока процесс не войдет в норму.

Подобным же свойством обладают и многие другие материальные системы. Если происходит отклонение от нормы, возникают силы, которые возвращают систему в состояние равновесия.

Более того, можно предполагать, что способность к саморегуляции — свойство не только отдельных систем, но и присуще в какой-то мере материи вообще. Вспомним хотя бы хорошо известный каждому школьнику закон Ленца, согласно которому всякое изменение магнитного поля вызывает возникновение тока индукции, магнитное поле которого препятствует изменениям, вызвавшим этот ток.

Аналогичный закон — принцип Ле Шателье справедлив и для химических процессов. Если оказывать воздействие на систему, которая находится в равновесии, то это вызывает в ней соответствующее противодействие, которое будет возрастать до тех пор, пока не восстановится нарушенное равновесие.

Если сделать обобщение, то живые организмы и неживая среда, в которой они обитают, составляют единую общую систему. Между ними происходит непрерывный обмен веществ, в процессе которого живые организмы синтезируют живое из неживого и непрерывно обновляются… По крайней мере так обстоит дело на Земле.

Все это, вместе взятое, наводит на мысль о том, что живое и неживое не только не разделены какой-то непроходимой границей, но и являются в известном смысле вполне равноправными формами существования материи.


Прогресс или регресс?

Как-то мне пришлось присутствовать на одной любопытной дискуссии. Обсуждалась проблема развития в живой и неживой природе. Какое развитие считать прогрессивным, а какое — регрессивным?