* * *
Теперь можно перейти к созданию теории относительности — статье Эйнштейна «К электродинамике движущихся тел» все в том же знаменитом 17-м томе «Анналов физики». Восстановить точно историю ее создания невозможно — так в 1922 г. в Японии, отвечая на многочисленные вопросы, Эйнштейн говорит: «Трудно сказать, как я пришел к теории относительности, поскольку многие скрытые факторы влияют на человеческое мышление и, кроме того, воздействие их различно».
А в автобиографии он пишет: «Открытие не является делом логического мышления, даже если конечный продукт связан с логической формой», — и при этом, что психологически очень важно, замечает, — «я приходил к заключению, что только открытие общего формального принципа может привести нас к надежным результатам. Образцом представлялась мне термодинамика. Там общий принцип дан в предложении: законы природы таковы, что построить вечный двигатель (первого и второго рода) невозможно. Но как же найти общий принцип, подобный этому?»
Можно поэтому думать, что логическая упорядоченность рассуждений в статье появилась позже, а ход рассуждений был, все же, связан именно с поиском такого «запрещающего» принципа. И действительно: в преобразования Лорентца, самостоятельно выведенные Эйнштейном из принципа инвариантности уравнений электродинамики Максвелла, входит квадратный корень от разности квадратов скорости света и скорости движения источника. Если верить этим формулам, если принять, в отличие от Лорентца и Пуанкаре, что они не являются формальными упражнениями в математических преобразованиях, а отражают физические явления, то скорость, большая скорости света, должна приводить к мнимым величинам времени, длины и т. д. А как их интерпретировать?
И тут можно попробовать просто — по некоторой аналогии с термодинамикой — их запретить, т. е. проверить возможность введения такого принципа: скорость, большая скорости света, невозможна.
Но с уравнениями Максвелла этот принцип согласуется только в случае отсутствия эфира, неподвижного или увлекаемого — однако именно ненужность, или точнее, не-необходимость, эфира Эйнштейн доказывает в своей квантовой теории. Так что здесь противоречий нет. Нужно теперь проверить кинематику, т. е. механику, — с нее логически и начинается статья. И здесь также не встречается противоречий — следовательно, можно провозгласить основным принцип: свет в пустоте распространяется с постоянной скоростью и эта скорость является предельно допустимой.
Основная новизна этой статьи содержится в ее части, относящейся к механике, но название «К электродинамике движущихся тел» отражает, по-видимому, ход мыслей автора, что и может оправдать наши попытки психологического анализа.
При этом, однако, очень важно такое замечание: в теории Фитцджеральда-Лорентца, при тех же математических выражениях, неявно принималось, что сокращение длины тела вдоль направления движения должно быть связано с каким-то изменением действия молекулярных сил (поэтому сам Лорентц отнюдь не считал, что его преобразования адекватны теории относительности Эйнштейна), а Пуанкаре говорил о возможной необходимости каких-то новых гипотез, т. е. опять-таки о каком-то изменении состояния или структуры движущегося тела. Следовательно, по их воззрениям, наблюдатель, который находится на движущемся теле, мог бы заметить эффекты сокращения и поэтому обнаружить, что он движется относительно некоей абсолютной системы отсчета: инерциальные системы отсчета при таком подходе не равноправны.
Но не так у Эйнштейна — как он сам писал в 1911 г. в связи с бесчисленными вопросами: «Сокращение не является реальным, поскольку оно не существует для наблюдателя, движущегося вместе с телом; однако оно реально, так как оно может быть принципиально доказано физическими средствами для наблюдателя, не движущегося вместе с телом».
* * *
Итак, мы видим, что построение в 1905 г. теории относительности не было единичным, пусть даже гениальным прозрением. Для его осуществления необходимо было совершить последовательную серию исследований и открытий, каждое из которых, взятое по-отдельности, могло обессмертить имя автора:
1) убедиться в атомарной структуре материи;
2) пересмотреть закон равнораспределения энергии по степеням свободы;
3) показать (или, во всяком случае, предположить) возможность распространения света в виде частиц-квантов, фотонов;
4) полностью отказаться на этом основании от концепции эфира, одним ударом разрубить этот многовековой гордиев узел;
5) предложить общий «запрещающий» принцип (типа принципов термодинамики);
6) объединить принципы относительности в механике и в электродинамике.
Такая цепочка гениальных открытий, совершенных одним человеком за один год, не имеет даже приблизительных аналогов в истории науки: Эйнштейн последовательно прошел по всем этим ступеням, и поэтому создание им теории относительности вовсе не явилось некоторым одиночным, хоть и гениальным открытием. Но ни Лоренц, ни Пуанкаре осуществить такую программу не могли — психологически они так и не освободились от концепций эфира. Именно поэтому о них можно и должно говорить как о предшественниках Эйнштейна, но лавры творца теории относительности принадлежат ему и только ему.
В первой же статье по этой теме Эйнштейн принимает два постулата:
1. Все законы физики имеют одинаковый вид во всех инерциальных системах отсчета.
2. В любой инерциальной системе отсчета скорость света одинакова вне зависимости от движения того тела, которое этот свет испускает. (Этот постулат иногда формулируется как невозможность скорости, большей скорости света в пустоте.)
Из этих постулатов сразу же следуют правила преобразования систем координат, включающие сокращение длины в направлении движения и замедление хода времени, т. е. преобразования Лорентца (Лорентц не понял математической, так называемой групповой природы этих преобразований — ее выявили независимо Пуанкаре и Эйнштейн).
С общенаучной точки зрения чрезвычайно важным оказалось утверждение СТО об относительности понятия «одновременности»: те события, которые представляются одновременными одному наблюдателю, могут казаться разновременными другому — из-за конечности скорости распространения информации, сигнала становится невозможным установить «истинную» последовательность близких по времени событий в пространственно разделенных точках.
Трудность усвоения новых понятий хорошо иллюстрируется анекдотом, популярным в ту эпоху — Артуру Эддингтону, автору наиболее серьезной книги по теории относительности, задают вопрос: «Сэр, говорят, что Вы один из трех людей в мире, понимающих эту теорию?» Эддингтон морщит лоб и спрашивает: «А кто же третий?» Однако сейчас основы теории относительности часто включаются в школьные программы и никаких особых сложностей они уже не вызывают.
Из этих преобразований следует, что сокращения длины и замедление времени зависят от квадрата отношения скорости движения к скорости света, которая равна примерно 300 тыс. км/с. Поэтому для используемых нами двигателей и скоростей, ими развиваемых, всеми такими изменениями можно пренебречь.
Тем не менее, все выводы Эйнштейна удалось проверить в эксперименте. Для особо неверующих точные атомные часы помещали на самолет и чуть ли не неделями держали в полете — отставание часов (это микросекунды, скорость самолета мала в сравнении со скоростью света) точно соответствовало теории. Для физиков достаточны и более простые способы проверки: частица мюон (или мю-мезон) живет, в среднем, две миллионные доли секунды и распадается на электрон или позитрон и два нейтрино, однако те мюоны, которые рождены солнечными космическими лучами в верхних слоях атмосферы, успевают все же долететь до поверхности Земли — распадаются они «по собственным часам», а из-за их скорости, близкой к световой, за это же время, прошедшее по их часам, на Земле проходит в несколько раз больший промежуток времени, и поэтому их можно наблюдать, а рассчитывая их скорости, сравнивают это время с рассчитываемым по формуле лоренцевского сокращения, т. е. в соответствии с СТО.
Аналогично проверено и сокращение размеров тел вдоль линии движения с ростом скорости: два протона, разогнанные навстречу друг другу в ускорителе, взаимодействуют не как шарики, а как диски, сжатые в направлении движения согласно тем же формулам. Отметим также, что уже при определении точных координат спутников приходится учитывать эффекты СТО, иначе можно ошибиться на несколько километров.
Все эти вопросы, вопросы кинематики, составляют примерно половину первой статьи Эйнштейна, вторая половина посвящена электродинамике. При этом оказывается, что электродинамика Максвелла настолько опередила свое время и была такой завершенной, что полвека спустя Эйнштейн смог почти без изменений включить ее в СТО.
Однако из своих же исследований фотоэффекта он знает, что уравнения Максвелла не являются абсолютно универсальными, и поэтому формулирует свой принцип относительности в более общем виде, чем нужно для этих уравнений. Здесь возникает очень любопытный психологический парадокс: практически одновременно в статье о квантах он отказывается от волновой теории света, а в определении скорости света в СТО именно на нее и опирается — такой дуализм (позднее именно он станет основой квантовой механики) говорит о безграничной вере Эйнштейна в свою физическую интуицию.
С публикацией первой статьи научная «изоляция» Эйнштейна, скромного эксперта Патентного бюро, кончилась — посетивший его первым Макс фон Лауэ позднее вспоминал: «Встретивший меня молодой человек произвел очень неожиданное впечатление. Я не мог поверить, что разговариваю с создателем теории относительности». Далее он пишет, что единственная комната, где живут Эйнштейны, завешана детскими пеленками, а сам он пишет, согнувшись у кухонного стола, и одновременно покачивает кроватку с ребенком.