Наблюдения и озарения или Как физики выявляют законы природы — страница 23 из 55

Некоторые физики считают теорию БКШ наиболее важным вкладом в теоретическую физику с момента создания квантовой теории. Джону Бардину, Леону Куперу и Дж. Роберту Шрифферу была присуждена Нобелевская премия по физике 1972 г.

Отметим, что в 1958 г. они с помощью своей теории предсказали сверхтекучесть жидкого гелия-3 (изотоп гелия, ядро которого содержит два протона и один нейтрон) за счет спаривания атомов, каждый их которых является фермионом, при температуре существенно ниже лямбда-точки гелия-4. (Сверхтекучесть наблюдалась ранее только у гелия-4 и считалось, что она невозможна у изотопов с нечетным числом ядерных частиц.) Этот результат подтвердили экспериментально в 1972 г. Дуглас Ошеров, Дэвид Ли и Роберт Ричардсон (Нобелевская премия 1996 г.), их работа также привела к некоторому пониманию того, как формируются другие структуры, похожие на струны, которые могли возникнуть во время Большого взрыва.

Еще один важный пример такого спаривания «по Куперу» представляют собой нейтронные звезды: пары нейтронов (у каждого спин ½) также образуют бозон, а потому могут находиться в сверхтекучем, низшем по энергии состоянии. Только такие спаривания и могут объяснить свойства этих звезд.

5. Туннельные контакты и эффекты Джозефсона

Согласно классической физике, в электрической цепи, разорванной барьером из изолятора, постоянный ток течь не будет. Однако квантовая механика допускает «туннелирование» электронов через достаточно узкий барьер, и чем он тоньше, тем вероятность туннелирования выше. Эффект туннелирования (мы уже не раз говорили о нем) был установлен для ядер, но никогда не проверялся на макроскопических контактах.

Лео Эсаки (р. 1925) решил попытаться проверить эффект туннелирования на полупроводниковых диодах. Диод проводит ток в одном направлении и содержит барьер, не пропускающий ток в противоположном направлении. Барьер образуется, когда содержание носителей заряда вблизи области перехода обедняется, и при увеличении концентрации примесей ширина обедненной области уменьшается. Группе Эсаки удалось создать диоды с очень высокими концентрациями примесей, т. е. с высокой вероятностью туннелирования, и показать, что электрические характеристики таких диодов согласуются с квантовыми представлениями.

Но тут вдруг совсем неожиданно выяснилось, что если туннельные токи в диодах велики, то в некотором диапазоне изменений тока производная сопротивления диодов становится отрицательной — напряжение на диоде падает с увеличением тока (в обычном резисторе ток пропорционален напряжению — это закон Ома!).

Цепь, в которую включено такое отрицательное сопротивление, может генерировать высокочастотные колебания. Такие туннельные диоды (диоды Эсаки) с переходами шириной всего лишь в одну миллионную сантиметра (тридцать атомов по толщине) сразу же после создания их первых образцов в 1957 г. начали использоваться для генерации и детектирования в технике высоких частот.

Примерно в те же годы Айвар Джайевер (р. 1929), работая в «Дженерал электрик», исследовал электрическое поведение переходов, состоящих из металлических контактов, разделенных очень тонкими изолирующими слоями. Эта работа представляла технический интерес, поскольку в большинстве электрических металлических контактов их поверхности разделены тонкими изолирующими слоями окислов и загрязнений.

Джайевер, инженер-электрик по первоначальному образованию, заинтересовался явлениями сверхпроводимости и начал изучать теорию БКШ. Согласно теории, в сверхпроводниках должна существовать так называемая энергетическая щель — область энергий, которые электрон не может иметь, запрещенные энергии. Вот Джайевер и решил выяснить, влияет ли такой запрет на электрические свойства перехода из изолятора между нормальным металлом и сверхпроводником.

Эффекты Джозефсона оказались необычайно важными в практическом применении. Так как частота переменного тока зависит от приложенного к контакту напряжения и отношения заряда электрона к постоянной Планка, то это позволило резко увеличить точность измерения их отношения. На основе этих эффектов созданы новые квантовые стандарты напряжения и т. д. Соединяя в замкнутую цепь два джозефсоновских контакта, экспериментаторы сконструировали необычайно чувствительные датчики магнитного поля. Такие устройства, называемые сквидами (от англ. сокращения SQUID — сверхпроводящее квантовое интерференционное устройство), являются самыми чувствительными детекторами магнитного поля. Они применяются в медицине для измерения магнитных полей живых организмов (например, выявления заболеваний мозга), для составления магнитных карт и детектирования объектов, скрытых под поверхностью. На основе эффектов Джозефсона создаются элементы криоэлектроники — перспективного направления конструирования компьютеров и т. д.

Он обнаружил, что запрещенные энергии легко наблюдаемы и их можно измерять с помощью разработанной им раньше методики. Эти наблюдения стали подтверждением теории БКШ. А дальнейшие исследования напыленных пленок алюминия, разделенных только слоем окисла алюминия, показали, что электрические свойства таких переходов позволяют получить огромное количество информации о характеристиках атомных колебаний и поведении сверхпроводников. Метод туннелирования Джайевера быстро стал одним из основных способов наблюдения и определения свойств сверхпроводников.

Брайан Д. Джозефсон (р. 1940) в ранние студенческие годы занимался эффектом Мессбауэра. В 1962 г. он, как говорят, поспорил с экзаменатором, что можно найти случай, когда постоянный ток течет через разрыв в электрической цепи. Вспомнив, возможно, о работах Джайевера он теоретически рассчитал, как будет вести себя аналогичный контакт между двумя сверхпроводниками: получалось, что ток может течь через изолятор и при отсутствии разности потенциалов между двумя проводниками (стационарный эффект Джозефсона), — если барьер достаточно узок, то куперовскую пару могут образовывать два электрона, находящиеся по разные его стороны. Это был совершенно неожиданный, не согласующийся с классическими моделями результат.

Джозефсон также предположил, что если к такому контакту приложить разность потенциалов, то через него пойдет осциллирующий ток с частотой, зависящей только от величины приложенного напряжения (нестационарный эффект Джозефсона). Оба эффекта очень чувствительны к магнитному полю в области контакта. Эти явления были вскоре подтверждены экспериментально, и их свойства полностью согласовывались с теорией. (Оказалось, что многие экспериментаторы, использующие методику Джайевера, и ранее наблюдали эффекты Джозефсона, но отбрасывали их как «шумы».)

В 1973 г. Лео Эсаки, Айвар Джайевер и Брайан Д. Джозефсон были удостоены Нобелевской премии по физике.

6. Успехи и проблемы

Физика низких температур — обширная область исследований, не устающая преподносить сюрпризы ученым. Мы кратко перечислим некоторые из них.

В течение многих лет в мире физики безраздельно господствовала теория БКШ, ее положение казалось незыблемым. Сверхпроводимость вышла уже в технику: для больших ускорителей с начала 1970-х гг. строятся гигантские электромагниты с обмотками из сверхпроводников. Рассматриваются и возможности использования сверхпроводников в суперкомпьютерах.

Исследования сверхпроводимости, конечно, продолжались; в некоторых сплавах, в основном с ниобием, удавалось чуточку, на десятую, на сотую градуса поднять критическую температуру. Так дошли почти до 23 К, т. е. до минус 250 градусов по шкале Цельсия. Дело в том, что поиск сверхпроводников с более высокой температурой перехода имеет огромное техническое и экономическое значение: гелий очень дорог, и использование его для охлаждения, скажем, линий электропередач нерентабельно, но, если бы удалось найти сверхпроводники с температурой перехода порядка температуры сжижения воздуха (83 К, т. е. -190 °C), это позволило бы решить множество проблем электротехники.

И вдруг, сенсация мирового масштаба: в 1986 г. Алекс Мюллер (р. 1927) и Иоганн Георг Бедхорц (р. 1950) сообщают об открытии ими веществ, совсем не металлов, а керамик, содержащих медь и некоторые редкоземельные элементы, но переходящих в сверхпроводящее состояние при гораздо более высоких температурах (в настоящее время — уже почти при комнатных!). Нобелевскую премию они, и это тоже сенсационно, получают почти сейчас же. Но к этим веществам теория БКШ, по-видимому, не применима и природа высокотемпературной сверхпроводимости совершенно не ясна. К тому же керамики очень нетехнологичны — из них нельзя вытягивать провода, и у них очень низок критический ток разрушения сверхпроводимости.

А еще одна сенсация прозвучала в начале 2002 г.: очень простое соединение, диборид магния (МдВ2 — фактически это просто тальк, которым присыпают припухлости у детей), переходит в сверхпроводящее состояние при 39 К, и притом это вовсе не керамика, а температура перехода у него много выше, чем предсказывает БКШ. Что это: интуиция исследователей, случайность, необходимость новой теории? Поиск продолжается и никаких признаков его окончания не видно.

Раздел IIЯдро? Элементарно!Глава 1Атомное ядро

1. Протон

Как мы помним, в 1911 г. Резерфорд открыл существование атомного ядра. После этого, естественно, он продолжил облучение атомов различных веществ альфа-частицами с целью выявить особенности их структуры: к тому времени нельзя было исключить, что все ядра разных веществ — это принципиально разные частицы. Правда, при радиоактивном распаде одни элементы превращались в другие: уран в радий и т. д. Но, может быть, таковы только радиоактивные элементы? Вот если удастся превратить один стабильный элемент в другой, тогда можно будет говорить о том, что ядра не являются элементарными частицами, и даже думать об их составе.

В 1914 г. Резерфорд уже выдвигает идею об искусственном превращении одних ядер в другие: он предполагает, например, что ядро атома может поглотить один из своих электронов и тем самым понизить свой заряд на единицу, перейти на клетку влево в таблице элементов. (Такое явление действительно открыли, правда, гораздо позже — оно называется электронным захватом и сродни бета-распаду) И только в 1919 г. мечта Резерфорда сбывается: азот, облученный альфа-частицами, превращается в кислород! (Деталей этого превращения он не выясняет, да они сейчас и не важны — главное, что превращения элементов возможны, ядра не являются элементарными частицами!)