Наблюдения и озарения или Как физики выявляют законы природы — страница 4 из 55

, в которое входит уран.

Работа по исследованию радиоактивности солей урана была очень тяжелой физически (и опасной для здоровья, о чем еще не было известно): нужно было переработать вручную тонны урановой руды (ранее она использовалась только в производстве красок), для того, чтобы последовательными химическими реакциями выделить нужные компоненты — вначале только уран и торий, который также оказался радиоактивным.

И тут выяснилось, что некоторые части пустой, т. е. очищенной от урана и тория породы все же радиоактивны. Пришлось предположить, что эта порода содержит еще какие-то, возможно, новые радиоактивные элементы. К работе подключился и Пьер Кюри, и в 1898 г. они открывают два новых элемента — полоний (по латинскому названию Польши) и радий (он примерно в миллион раз активней урана), а также явление наведенной радиоактивности атомов других веществ, находящихся вблизи источников этого излучения. Соль радия испускала голубоватое свечение и тепло. Это фантастически выглядевшее вещество привлекло к себе внимание всего мира.

Пьер Кюри сосредотачивается на исследовании физических параметров излучения, Мария Кюри — на химических свойствах веществ.

Радиоактивное излучение пространственно изотропно, т. е. одинаково распространяется во все стороны. Как же его исследовать? Поместив небольшое количество радия в толстый и длинный металлический стакан, стенки которого поглощают излучение, они таким образом получают источник направленного радиоактивного излучения.

Оказалось, что это излучение разделяется в магнитном поле на три части. (Одновременно с ними этот эффект установил Э. Резерфорд и назвал эти три вида излучения по первым трем буквам греческого алфавита: альфа, бета и гамма, но до сих пор в учебниках приводится рисунок этих трех видов лучей, взятый из диссертации М. Кюри 1903 г.) Из них альфа-лучи положительно заряжены, а если их собрать в пробирку, то там, как выяснилось позже, появляется газ гелий, т. е. альфа-лучи — это поток ядер гелия; бета-лучи, их проще анализировать, — это поток электронов, гамма-лучи — это высочастотное электромагнитное излучение.

Далее Пьер Кюри научился посылать потоки этих лучей в калориметр, который они нагревают, и таким образом возможно измерить энергию излучения. А однажды он надолго забыл в жилетном кармашке ампулу с микрограммом радия: под этим местом появилась язвочка — следовательно, радиоактивность биологически активна, а может быть, эта особенность пригодится в медицине?

К 1902 г. Мария Кюри получила несколько дециграммов чистой соли радия, а в 1910 — уже металлический радий. В 1903 г. супруги Кюри удостаиваются, вместе с А. Беккерелем, Нобелевской премии по физике за открытие радиоактивности, в 1911 Марии Кюри присуждается Нобелевская премия по химии за получение металлического радия. (Пьер Кюри трагически погиб в 1906 г. — на него налетела выскочившая из-за поворота телега с ломовой лошадью, его кафедра была передана Мария Кюри и она стала первой женщиной — профессором Сорбонны.) Отметим, что в своей Нобелевской лекции Пьер Кюри указал на потенциальную опасность, которую представляют радиоактивные вещества, попади они не в те руки, и добавил, что «принадлежит к числу тех, кто вместе с Нобелем считает, что новые открытия принесут человечеству больше бед, чем добра». Заметим также, что супруги Кюри решительно отказались от патентов и от перспектив коммерческого использования радия: по их убеждению, это противоречило бы духу науки — свободному обмену знаниями.

Мария Кюри до конца жизни продолжала интенсивную научную работу: было изучено множество радиоактивных веществ, создана аппаратура и методики таких исследований, впервые были опробованы применения радиоактивности в медицине и т. д. Умерла она от лейкемии — это следствие радиационного заражения в ходе ее исследований.

3. Проблема определения исторических и природных дат

Одна из очень привлекательных сторон физики состоит в том, что ее достижения оказываются вдруг решающими в исследовании совершенно иных проблем. Одной из таких проблем является точное датирование исторических и геологических событий, а также изменений климата на протяжении веков или тысячелетий и даже геологических эпох.

Помимо анализа письменных источников, сравнения находок в разных раскопках, использования стратиграфии, т. е. анализа относительного расположения слоев с теми или иными находками, археологи и палеоклиматологи уже давно используют методы дендрохронологии — в стволе многих пород деревьев ясно различимы ежегодные слои, по толщине которых можно судить о погодных условиях, а нахождение, к примеру, вулканической пыли в них позволяет увязать эти слои с известными датами извержений вулканов и т. д. (напомним, что возраст некоторых сейквой в Северной Америке превышает 4 тыс. лет). Аналогичный метод применим и к анализу ежегодных отложений слоев осадков на дне некоторых озер. Для более древних дат все большую популярность приобретает анализ слоев карбонатов, откладываемых в колониях кораллов: он, в частности, позволяет даже оценить количество дней в году в прошлом (в некоторых кораллах различимы ежедневные слои), т. е. замедление скорости вращения Земли — оказывается, в середине Девона продолжительность года была порядка 400 дней.

Все эти методы дают лишь относительную датировку, их нужно увязать с абсолютными значениями дат. Эту задачу решил радиохимик Уиллард Ф. Либби (1908–1980, Нобелевская премия по химии, 1960).

История, приведшая к этому открытию, началась с того, что в 1939 г. Серж Корф из университета Нью-Йорка обнаружил, что космические лучи вызывают в верхних слоях атмосферы поток нейтронов, которые легко поглощаются азотом, превращая его в радиоактивный изотоп углерод-14 (С-14).

Далее, как сообразил Либби, такой углерод окисляется, а получившийся углекислый газ поглощается в процессе фотосинтеза растениями. Если предположить, что этот процесс идет с постоянной скоростью, то все живые организмы в процессе фотосинтеза или при поедании растений получают изотоп С-14. Тем самым, в них при жизни, несмотря на распад, поддерживается постоянный уровень этого изотопа, который, однако, начинает падать с прекращением его поглощения после смерти.

Период полураспада С-14 равен 5730 годам, и Либби заключил, что «должна существовать возможность путем измерения оставшейся радиоактивности измерять время, которое прошло с момента смерти, если она произошла в период от 500 до 30 тыс. лет тому назад».

Либби проверил точность этого метода, измерив радиоактивность образцов красного дерева и пихты — их точный возраст был установлен подсчетом годовых колец. Он также проанализировал кусок дерева от погребальной лодки египетского фараона, кусочки льняной ткани, которыми были перевязаны манускрипты, найденные в районе Мертвого моря, хлеб из дома в Помпеях, погребенный под вулканическим пеплом в 79 г. н. э. и другие предметы, возраст которых был уже известен. При этом он получил блестящее подтверждение своей теории, и изобретенный им метод датирования стал широко применяться в археологии[3]. Сам Либби смог определить возраст древесного угля со стоянки древних людей в Стоунхендже (Англия) и кочерыжки кукурузного початка из пещеры в Нью-Мехико, т. е. определил время формирования соответствующих культур, а также установил, что последний ледниковый период в Северной Америке окончился 10 тыс. лет назад, а не 25 тыс., как было ранее подсчитано геологами и т. д.

Вскоре для гораздо более древних периодов были развиты методы, основанные для длительностях других распадов: калий-аргоновый, урановый и т. д. Так возникла новая область исследований: абсолютная или изотопная геохронология. И конечно, новые методы ведут к новым открытиям и заставляют пересмотреть многие устоявшиеся догмы и представления.

Уже давно в литературе, особенно популярной, обсуждается проблема гибели динозавров — страшной катастрофы, постигшей некогда Землю. Однако, как показал Марк Михайлович Рубинштейн (1915–1978), гибель динозавров и смена их млекопитающими вовсе не должна была быть мгновенной — она могла тянуться достаточно долго, соответствуя скорости эволюции, просто палеонтологи привыкли датировать слои по находкам останков животных и поэтому все слои с динозаврами относили к одному и тому же периоду — радиоактивные же методы разносят их по времени.

4. Эрнест Резерфорд

Опыт без фантазии может дать немного.

Э. Резерфорд

Как все же иногда случается, Эрнест Резерфорд (1871–1937, Нобелевская премия по химии 1908) словно предчувствовал свои будущие открытия или, точнее, ему удалось осуществить именно свои представления о мире: еще студентом второго курса Кентербери-колледжа в Новой Зеландии он выступил на семинаре с докладом «Эволюция элементов». Он тогда уже думал, что атомы химических элементов должны представлять собой сложные системы, состоящие из одних и тех же элементарных частиц, хотя еще не было практически никаких оснований думать о сложном строении атома и тем более — сравнивать атомы разных веществ (гипотеза Праута начала XIX в. о том, что все атомы построены из атомов водорода, была опровергнута и прочно забыта).

В 1895 г. Резерфорд приезжает в Англию, в Кавендишскую лабораторию, к самому Джи-Джи Томсону. Первое, по-видимому, его открытие, заброшенное из-за переезда, — это создание приемника электромагнитных волн, фактически, осуществление радиосвязи (раньше Попова и Маркони). Но в лаборатории у Томсона Резерфорд понимает: идут более фундаментальные разработки, — и поэтому он без сожаления, без публикаций, отказывается от всего, сделанного ранее, чтобы заняться проблемами строения вещества.

Он помогает Дж. Дж. Томсону в его исследованиях электрона, но затем полностью сосредотачивается на изучении радиоактивности. Первое же фундаментальное открытие Резерфорда в этой области — обнаружение неоднородности излучения, испускаемого ураном — сделало его имя известным в научном мире; благодаря ему в науку вошло понятие об альфа- и бета-излучениях, исследована их природа, введено понятие времени полураспада радиоактивных атомов.