b перемещается по прямой, параллельной оси х.
2. Определение натуральной величины отрезка путем вращения
Отрезок, параллельный какой-нибудь плоскости проекций, проецируется на нее без искажения. Если повернуть отрезок таким образом, чтобы он стал параллельным одной из плоскостей проекций, то можно определить его натуральные размеры. Это вращение осуществляется легче всего вокруг оси, которая перпендикулярна одной из плоскостей проекций.
На рисунке 93 показано вращение отрезка около оси, которая перпендикулярна горизонтальной плоскости. Пусть дан произвольный отрезок АВ, тогда проведем через точку В вертикальную прямую I. Она, в свою очередь, перпендикулярна горизонтальной плоскости. Теперь будем вращать отрезок АВ около этой прямой I. При этом отрезок АВ опишет поверхность прямого кругового конуса, а его вершина будет расположена в точке В (рис. 93). Прямая I здесь является осью конуса. В этом случае точка А описывает окружность, которая является основанием этого конуса. Данное основание изображается в натуральную величину на горизонтальной плоскости, в виде отрезка, параллельного оси х, на фронтальной плоскости. Отрезок АВ представляет собой образующую конуса.
Отрезок АВ будем вращать до тех пор, пока он не расположится параллельно фронтальной плоскости (таких положений будет два, и они совпадают на фронтальной плоскости с контуром вспомогательного конуса). В этом случае его горизонтальная проекция должна стать параллельной оси х. Оказалось, что точка В легла на ось вращения, поэтому при вращении отрезка она не изменит своего положения. На рисунке 93 показано, как горизонтальная проекция а описывает дугу окружности с центром в точке b, а фронтальная проекция а перемещается по прямой, параллельной оси х.
Проекция является натуральным изображением отрезка АВ, т. е. á1b́ = AB.
На рисунке 94 показано вращение отрезка около оси, которая перпендикулярна фронтальной плоскости. При этом натуральная величина отрезка АВ установлена вращением около оси I, которая проходит через точку В перпендикулярно фронтальной плоскости. В этом случае построение абсолютно аналогично тому, которое было рассмотрено ранее.
Лекция № 9. Пересечение поверхности многогранника проецирующей плоскостью
1. Общие понятия
Если пересечь поверхность многогранника плоскостью, то в сечении получается многоугольник. Первая задача заключается в построении проекций многоугольника, получившегося в сечении, затем следует определить натуральный вид этого многоугольника. Также необходимо построить развертку поверхности данного многогранника, причем нужно указать на его поверхности след секущей плоскости.
Построение проекций фигуры сечения можно выполнить двояко.
1. Можно найти точки встречи ребер многогранника с секущей плоскостью, после чего соединить проекции найденных точек. В результате этого получатся проекции искомого многоугольника. В этом случае целью задачи является определение точек встречи нескольких прямых с данной плоскостью.
2. Построение можно выполнить по-другому: последовательно найти линии пересечения каждой из граней многогранника с секущей плоскостью, тогда придется несколько раз строить линию пересечения двух плоскостей.
Чтобы определить истинные размеры многоугольника, который получается в секущей плоскости, обычно поступают следующим образом: совмещают эту плоскость с плоскостью проекций.
Плоская фигура, которая получается, если все грани вычертить в настоящую величину на плоскости чертежа в том порядке, в каком они следуют на самом многограннике, называется разверткой (или выкройкой) поверхности данного многогранника. Для ясности можно сказать, что поверхность многогранника как бы разрезается вдоль некоторых его ребер так, чтобы потом эту поверхность можно было совместить с плоскостью чертежа. В том случае если поверхность многогранника пересечена некоторой плоскостью, тогда для построения развертки на каждой грани следует изобразить след секущей плоскости.
Построение развертки боковой поверхности многогранника осуществляется в два основных этапа:
1) определением истинных размеров всех элементов каждой ее грани. Именно благодаря им можно построить изображение этой поверхности в натуральную величину;
2) последовательное построение каждой грани в натуральную величину исходя из найденных раньше элементов.
В случае если данная грань многогранника представляет собой треугольник, тогда, чтобы построить ее в натуральную величину, нужно просто знать размеры всех ее сторон. Если грань многогранника представляет собой четырехугольник, то, кроме четырех его сторон, следует знать еще какой-либо ее элемент (или один из углов, или диагональ и т. п.). В некоторых случаях вспомогательными линиями могут быть следы секущей плоскости.
2. Призма
На рисунке 95 показано пересечение поверхности прямой призмы фронтально-проецирующей плоскостью Р. Первым делом нужно рассмотреть проекции сечения. Ребра призмы перпендикулярны горизонтальной плоскости и проецируются на ней точками. Здесь горизонтальная проекция а точки А является пересечением ребра KK1 с плоскостью Р, она совпадает с проекцией k. Фронтальная проекция а располагается на следе Рv. Следовательно, горизонтальная проекция áb́ć искомого сечения совпадает с проекцией основания klm. При этом фронтальная проекция аbс расположена на следе Рv. Если располагать двумя проекциями и сечениями, то нетрудно построить третью.
Для определения истинных размеров треугольника ABC нужно совместить плоскость Р с горизонтальной плоскостью путем вращения около горизонтального следа Ph.
Чтобы построить развертку, надо иметь все необходимые элементы на эпюре, основание проектируется без искажения на горизонтальную плоскость, а все ребра с точками пересечения – на фронтальную плоскость.
Начинать построение развертки следует с ребра КК1, поместив его где-нибудь в стороне. На рисунке 96 показаны вспомогательные прямые, проведенные перпендикулярно ребру КК1. После этого от точки К вправо откладывается отрезок KL, равный стороне основания kl. Затем проводят второе ребро LL1, завершая построение натурального изображения грани KK1LL1. Далее справа от этой грани строят натуральное изображение следующей грани LL1M1M и продолжают до тех пор, пока не будет целиком построена развертка боковой поверхности призмы.
После этих действий на всех ребрах отмечают точки А, В и С, откладывая на развертке KA = ḱá, LB = ĺb́ и МС = ḿс́.
Отметим, что на развертке отрезки АВ, ВС и СА имеют натуральные размераы сторон треугольника сечения, который показан на чертеже слева в натуральную величину (треугольник ABC). В связи с этим данные отрезки должны быть равны соответствующим сторонам треугольника. Проверкой точности построения является равенство этих отрезков на чертеже.
Теперь осталось только пристроить к развертке боковой поверхности призмы верхнее и нижнее основания, т. е. два треугольника MKL и M1K1L1. При этом каждый из треугольников строится по трем сторонам.
На рисунке 97 показано пересечение поверхности призмы горизонтально-проецирующей плоскостью Q. Здесь сечением является прямоугольник АА1В1В, одна пара сторон которого АВ и A1B1 проецируется без искажения на горизонтальную плоскость, а вторая пара AA1 и ВВ1 – на фронтальную и профильную плоскости.
Пусть натуральные размеры обеих сторон прямоугольника АА1В1В даны, но в разных местах. Для построения прямоугольника в натуральную величину нужно через а и b провести прямые перпендикулярно q, затем наметить на них где-нибудь положение точек А и В (AB⊥aA). После этого откладываются от точек А к В на вспомогательных линиях натуральные размеры сторон АА1 и ВВ1, при этом их берут с фронтальной проекции.
Строя натуральную величину сечения, мы как бы совместили прямоугольник с горизонтальной плоскостью, вращая его около горизонтального следа АВ (АВ = аb). После чего для удобства немного отодвинули это изображение от линии q.
Построение натурального вида прямоугольника
сечения весьма удобно делать слева от фронтальной проекции призмы (прямоугольник ABB1A1).
3. Пирамида
На рисунке 98 показано пересечение поверхности пирамиды фронтально-проектирующей плоскостью Р. На рисунке 98б изображена фронтальная проекция а точки встречи ребра KS с плоскостью P. Она определяется пересечением следа Pv с фронтальной проекцией ребра ḱś (рис. 98 а). Если фронтальная проекция а́ точки А дана, то легко найти её горизонтальную проекцию а.
На рисунке 98, б показаны натуральные размеры ABC сечения ABC, которые были определены совмещением его с горизонтальной плоскостью путем вращения около следа Ph. Отдельно на этом рисунке показаны элементы, которые необходимы для построения развертки. Натуральные размеры ребер пирамиды можно найти путём вращения их около оси, проходящей через вершину