Нанонауки — страница 16 из 31

Глава 4Строим памятник? Скорее монумент

Стремясь к конструированию таких приборов и установок, в которых работают лишь одиночные молекулы или считаные атомы, нанотехнология затевает самый настоящий переворот в технологии. В самом деле весь унаследованный порядок миниатюризации опрокидывается с ног на голову. Не удивительно, что такие крошечные установки вызвали острое любопытство у ученых, желавших разобраться в нанофизике. Что, если зайти достаточно далеко по этому новому пути и, скажем, увеличивать молекулу, умножая число входящих в нее атомов? Не удастся ли превратить такую огромную молекулу в вычислительную машину? Или механическую? Это же сняло бы все препоны, мешающие дальнейшей миниатюризации в микроэлектронике и микромеханике: все запихиваем внутрь одной-единственной молекулы, и молекула становится целой машиной. Отсюда и название для подобных молекул-машин — монументальные молекулы. Не потому, что они похожи на памятники, а потому, что они — огромны, монументальны. И тем монументальнее, чем сложнее становится машина, в которую такая молекула превращается.

Прежде чем начинать подобную «монументализацию», следовало бы выяснить: а сколько атомов понадобится, чтобы молекула смогла работать как двигатель, или как приемо-передатчик, или как вычислительная машина? А потом понять, какие «части» понадобятся этой молекуле-машине — чтобы не разваливалась и работала, то есть выполняла порученные ей задачи. И наконец придумать для нее такие технические средства, чтобы она могла получать приказы и/или сообщать о своем состоянии, принимать или передавать энергию, словом, чтобы наладить обмен информацией с машиной-молекулой.

Мысль о монументализации возникла в начале 1980-х годов — именно тогда эту идею высказал Форрест Картер, химик из NRL (Исследовательской лаборатории военно-морского флота). Он работал с токопроводящими полимерами, выстраивая внутри объема полимера длинные молекулы и в таком порядке, чтобы получались пластмассы, проводящие электричество. Изучая подобные длинные молекулы, Форрест Картер вспоминал про ту молекулярную электронику, о которой мечтал Ари Авирам. Идеи о сведении любого компонента электронной схемы к одной-единственной молекуле казались необыкновенно заманчивыми — это помогло бы пробить стену вроде той, в которую уткнулась транзисторная электроника со всеми ее технологиями в конце 1950-х годов. В те времена электронные схемы собирались покомпонентно, деталь за деталью, и вообразить, что в один прекрасный день удастся единым махом соединить миллионы деталей, необходимых для создания процессора вычислительной машины, было просто невозможно. Тем не менее Джек Килби решил эту задачу — в 1958 году он изобрел интегральную схему.

Задача, за которую взялся Картер, тоже на первый взгляд не решалась: как собрать воедино миллионы молекул-компонентов, если в такой схеме соединения будут обычными — то есть металлическими проводами, пускай и очень тонкими? И ведь между молекулами должен оставаться какой-то промежуток, ну, хотя бы в десяток нанометров. И как избавиться при таких масштабах и таком построении без квантовых эффектов? А эти явления наверняка осложнят функционирование любой схемы. И соединения-провода займут столько места, а там проблемы теплоотвода, наводок и т. п. Не лучше ли втиснуть все нужные компоненты в одну огромную молекулу — и дело с концом?

И вот подобно тому, как Джек Килби избавился от затруднений с подключениями и соединениями, придумав электронную микросхему, Форрест Картер предложил решить задачу подключения молекул-компонентов, придумав в 1984 году «молекулярную интегральную схему». Чтобы не ломать голову над тем, как свести каждый компонент (диод, транзистор и т. п.) к одной-единственной молекуле, а потом мучиться с их подключением друг к другу, он предложил воплотить всю схему в одной-единственной молекуле, затолкав в нее все компоненты и все соединения между ними. Физики, разумеется, возмутились, а химики впали в оцепенение! Дожили, ничего не скажешь: мало того, что надо соглашаться с тем, что молекула годится на роль детали в электронных устройствах, так еще нужно признать молекулу, в которой умещается вся электронная схема и, значит, кроме нее, этой молекулы, больше-то ничего и не нужно!

Зато Форреста Картера поддержали отдельные калифорнийские биотехнологи, в том числе Кевин Алмер из компании Genex: эти специалисты взялись так запрограммировать генетически бактерии, чтобы те производили не просто белки, но — сразу же и без необходимости каких-то переделок — требующиеся молекулярные электронные структуры. Французские предприятия Roussel-Uclaf и Elf Aquitaine, а с ними и Институт Пастера, поспешили поставить на эту же лошадь. Бойкие французы направили своих посланцев на организованный Форрестом Картером первый Конгресс по молекулярной электронике, куда в числе эмиссаров французской науки попал и Жоэль де Роне, бывший тогда директором по прикладным исследованиям в Институте Пастера[17]. Собравшиеся, однако, обнаружили, что дело, за которое они вроде бы не прочь взяться, какое-то непонятное и ненадежное. Ну да, хорошо бы молекулу подключать через провода, которые свяжут ее с макроскопическим миром и по которым будет осуществляться информационный обмен, но непонятно, как это сделать, — задачка кажется нерешаемой. А вот Ари Авирам в конце 1980-х ухватился за эту мысль о молекуле-схеме и попытался двинуться в этом новом направлении, открывшемся в молекулярной электронике.

Тогда в том же направлении заработала и мысль Эрика Дрекслера, задумавшегося о построении сложных механических машин-молекул, которые использовали бы, скажем, межмолекулярные или внутримолекулярные сцепления. Он придумал несколько вариантов вычислительного процессора, объединяющего в себе достижения молекулярного моделирования. Но на этом этапе монументализация происходила без участия химиков, а машины-молекулы оставались виртуальными, то есть нематериальными. Лишь много позже, с изобретением туннельного микроскопа (а он, напомним, умеет манипулировать молекулами), химики получили возможность так обрабатывать молекулы, чтобы они превращались в процессоры. И, дабы найти пути к чаемому синтезу и наделить его плотью, оставалось лишь упрощать и избавляться от сложностей.

ЯВЛЕНИЕ МОЛЕКУЛ-МАШИН

Раз уж появились идеи о монументальных молекулах и о молекулах-машинах, а затем и теоретические разработки «виртуальных» молекул-приборов и молекул-установок, то, надо думать, вскоре должны были появиться и первые молекулы-установки «во плоти». Пока что речь не шла о процессоре для компьютера, но эти молекулы-приборы уже умели выполнять кое-какие измерения в «мире внизу». Давайте для начала откроем учебник по физике середины XX века. Там мы найдем немало приборов, придуманных для изучения еще недостаточно исследованных физических явлений. Вот, к примеру, прибор, замеряющий, как меняется проводимость полупроводника или его способность усиливать электрический сигнал в зависимости от температуры, а сам этот прибор сделан из вживленного в поверхность полупроводника кусочка оргстекла с металлизированной поверхностью — то есть, в сущности, это транзистор. А раз уж нанотехнология переворачивает вверх ногами весь порядок производства, то, значит, есть шанс создать нечто новое, где все монтажные точки и узелки будут заменены одиночными молекулами и каждая такая молекула станет и оборудованием, которое используется в эксперименте, и объектом, изучаемым в этом эксперименте.

ПРОВОД…

Первой молекулой-установкой, созданной для физического опыта, стал молекулярный провод — цепочка молекул с четырьмя молекулярными лапками. Придумали этот проводник в 1997 году я и Андре Гурдон из Центра структурных исследований и разработки материалов (CEMES). Своему детищу мы дали имя Lander, Приземляющийся, — потому что думали о маленьком роботе Sojourner, которого как раз в то лето НАСА отправило на космическом зонде Mars Pathfinder на Марс. Андре занялся синтезированием молекул чуть позже посадки зонда на Марс.

В своем эксперименте мы хотели измерить электропроводность молекулярного проводника. А четыре ножки, которые мы приделали к этому проводку, приподнимали его над металлической поверхностью, чтобы не возникали токи утечки. Да и игле туннельного микроскопа легче перемещать этот проводок на лапках по ровной металлической поверхности. Зато стало куда труднее установить электрический контакт с обоими кончиками проводка. Ничего не поделаешь, трудности бывают всегда — не одно, так другое. Чтобы обойти это препятствие, мы решили воспользоваться неким свойством процесса обработки металлических поверхностей: дело в том, что по ходу подготовки металлической поверхности фазы прокаливания чередуются с фазами протравливания, и в итоге получаются большие и ровные, но ступенчатые плоскости. Если подобрать температуру обработки, то можно получить площадку, кончающуюся уступом высотой в один слой атомов (то есть высотой в один атом). Обнаружение такой ступеньки с помощью туннельного микроскопа труда не составит. А если мы отыщем такую тонюсенькую ступеньку, то, наверное, удастся, манипулируя иглой микроскопа, расположить молекулярный проводок поперек этой ступеньки, а потом, понемногу толкая проводок, добиться, чтобы его кончик оказался над ступенькой. Напомним, что проводник — на лапках и потому не прикасается к поверхности. Но кончик над ступенькой изгибается и, следовательно, взаимодействует с нею. То есть один электрический контакт — проводника с металлической поверхностью — есть. Второй контакт возникает между вторым концом проводка и иглой туннельного микроскопа — если ее кончик установить точно над кончиком провода.

В этом опыте металлическая поверхность служила лабораторным столиком, а молекула — экспериментальной установкой, позволяющей так расположить молекулярный проводок, чтобы можно было замерить его сопротивление, тогда как игла микроскопа продолжала руку физика-экспериментатора. Первым сумел переместить наш