Наша математическая вселенная. В поисках фундаментальной природы реальности — страница 3 из 16

Когда я обсудил замысел этой книги с Джоном Брокманом, который впоследствии стал моим литературным агентом, он выразился предельно ясно: «Мне нужен не учебник, а ваша личная книга». Поэтому я написал своего рода научную автобиографию. Хотя она более про физику, чем про меня, это, безусловно, не привычная научно-популярная книжка, стремящаяся дать объективный обзор физики, в котором отражён устоявшийся консенсус и предоставлено столько же места для всех прочих точек зрения. Скорее, это личное расследование природы реальности, и, я надеюсь, вам понравится смотреть на неё моими глазами. Вместе мы изучим улики, которые я считаю самыми важными, и попробуем понять, на что они указывают.


Рис. 1.3. Если вы прочитали много современных научно-популярных книг и чувствуете, что понимаете, что такое искривлённое пространство, Большой взрыв, космический микроволновый фон, тёмная энергия, квантовая механика и т. д., вы можете попробовать пропустить гл. 2, 3, 4 и 7, просмотрев только «Резюме» в конце каждой из них. Если вы профессиональный физик, можете пропустить и гл. 5. Однако многие концепции, которые могут показаться знакомыми, на удивление тонкие, и если вы не можете ответить на все вопросы 1–6 в гл. 2, то, я надеюсь, вы изучите первые главы.



Мы начнём путешествие с того, как недавние научные открытия трансформировали сам контекст вопроса, что такое реальность. Физика пролила свет на внешнюю реальность в самых крупных (гл. 2–6) и малых (гл. 7–8) масштабах. В части I мы рассмотрим вопрос, насколько велика Вселенная, и будем приближаться к ответу, переходя к всё большим космическим масштабам. Одновременно мы займёмся изучением нашей космической колыбели и двух типов параллельных вселенных, попутно обнаруживая признаки того, что пространство, по сути, является математическим. В части II мы займёмся вопросом, из чего всё состоит, и погрузимся в субатомный микрокосм. Мы рассмотрим третий тип параллельных вселенных и найдём, что фундаментальные «строительные блоки» материи также, в сущности, математические. В части III сделаем шаг назад и подумаем, что именно это говорит о фундаментальной природе реальности. Начнём с обоснования того, что наши неудачи в понимании сознания не мешают исчерпывающему пониманию внешней физической реальности. Затем займёмся моей самой радикальной и спорной идеей, что фундаментальная реальность — чисто математическая; переведём такие понятия, как «случайность», «сложность» и даже «изменение» в статус иллюзий и найдём признаки существования четвёртого, последнего уровня параллельных вселенных. Путешествие завершится в гл. 13, когда, вернувшись домой, мы рассмотрим, что всё это значит для будущего жизни во Вселенной, для людей и вас лично.

Резюме

• Мне кажется, что самая важная в физике мысль о фундаментальной природе реальности — это мысль о том, что какой бы эта природа ни была, она сильно отличается от того, какой нам кажется.

• В части I книги мы будем исследовать физическую реальность во всё более крупных масштабах, переходя от планет к звёздам, галактикам, сверхскоплениям, нашей Вселенной в целом и двум возможным уровням параллельных вселенных.

• В части II мы исследуем физическую реальность во всё более малых масштабах, переходя от атомов к всё более весомым «строительным блокам», и повстречаемся с параллельными вселенными III уровня.

• В части III мы отступим на шаг и изучим фундаментальную природу этой странной физической реальности, рассмотрев при этом ту возможность, что в конечном счёте она — чисто математическая структура, представляющая собой часть IV и последнего уровня параллельных вселенных.

• Слово «реальность» для разных людей означает совершенно разные вещи. Я использую это слово для обозначения фундаментальной природы внешнего физического мира, частью которого мы являемся.

Часть I. Всё крупнее и крупнее

Глава 2. Наше место в пространстве

Космос велик. Действительно велик. Вы просто не поверите, насколько обширно, огромно, умопомрачительно велик космос.

Дуглас Адамс «Автостопом по Галактике»[4]

Космические вопросы

Мальчик поднимает руку, и я жестом предлагаю задать вопрос. «А космос тянется без конца?» — спрашивает он.

Вот это да! Я только что закончил небольшой рассказ об астрономии в «Детском уголке» в Уинчестере (Массачусетс, США), где мои дети проводят время после уроков, и вся очаровательная группа детсадовцев, сидя на полу, глядит на меня большими вопрошающими глазами, ожидая ответа. А этот пятилетний малыш только что задал вопрос, на который я не могу ответить! На самом деле, ответить на него не может никто на планете. И всё же это не безнадёжный метафизический вопрос, а серьёзный, научный: теории, о которых я вам расскажу, дают на этот счёт ясные предсказания, а уже идущие эксперименты могут пролить на него ещё больше света. Я считаю, что это важнейший вопрос о фундаментальной природе физической реальности, и он приведёт нас к двум типам параллельных вселенных (гл. 5).

Год за годом следя за мировыми новостями, я чувствовал, как во мне растёт мизантропия, но всего за несколько секунд этот малыш укрепил мою веру в потенциал человечества. Если пятилетний ребёнок может говорить такие вещи, представьте только, на какие достижения способны взрослые в подходящих обстоятельствах! Он также напомнил мне о важности обучения. Все мы от рождения наделены способностью удивляться, но в какой-то момент школа обычно умудряется вытравить её из нас. Я чувствую, что важнейшая моя задача как учителя не изложить факты, а разжечь эту угасшую страсть к вопрошанию.

Я люблю вопросы. Особенно глобальные. Я чувствую себя счастливым, потому что могу тратить львиную долю своего времени на интересные вопросы. То, что я могу называть эту деятельность работой и зарабатывать так на жизнь, — большая удача, превосходящая мои самые смелые надежды. Вот список из шестнадцати вопросов, которые мне чаще всего задают:

1. Как может пространство не быть бесконечным?

2. Как бесконечное пространство может быть создано за конечное время?

3. Куда расширяется Вселенная?

4. Где именно в пространстве произошёл наш Большой взрыв?

5. Произошёл ли наш Большой взрыв в одной точке?

6. Если возраст нашей Вселенной всего 14 млрд лет, то как мы видим объекты на расстоянии 30 млрд световых лет?

7. Не нарушают ли галактики, удаляющиеся быстрее света, теорию относительности?

8. Галактики действительно удаляются от нас — или это пространство расширяется?

9. Расширяется ли Млечный Путь?

10. Найдены ли следы сингулярности Большого взрыва?

11. Не нарушает ли закон сохранения энергии возникновение материи почти из ничего в ходе инфляции?

12. Что стало причиной нашего Большого взрыва?

13. Что было до нашего Большого взрыва?

14. Какова окончательная судьба нашей Вселенной?

15. Что такое тёмная материя и тёмная энергия?

16. Действительно ли мы несущественны для Вселенной?


На одиннадцать вопросов мы ответим в следующих четырёх главах. Но сначала вернёмся к детсадовскому вопросу, центральному для всей первой части книги: тянется ли космос бесконечно?

Насколько огромен космос?

Однажды отец дал мне совет: «Если ты задумался над сложным вопросом, на который не можешь ответить, займись сначала более простым вопросом, на который не можешь ответить». Последуем этому совету и выясним, какой минимальный размер должно иметь пространство, чтобы не противоречить наблюдениям. На рис. 2.1 показано, как поразительно выросли эти размеры: сегодня мы знаем, что пространство по крайней мере в миллиард триллионов (1021) раз превышает наибольшие расстояния, знакомые древним охотникам и собирателям, — те, что они могли пройти за время своей жизни.

Более того, на рисунке видно, что расширение наших горизонтов было не уникальным событием, а повторялось многократно. Всякий раз, когда людям удавалось заглянуть дальше и построить карту более крупных структур Вселенной, мы обнаруживали, что всё известное нам прежде является частью чего-то большего. Как показано на рис. 2.2, наша родина — это часть планеты, которая является частью Солнечной системы, которая является частью Галактики, которая является частью паттерна скоплений галактик, который является частью наблюдаемой Вселенной, которая является частью одного или более уровней параллельных вселенных.


Рис. 2.1. Нижнее ограничение на размер нашей Вселенной постоянно растёт. Заметьте, что шкала на вертикальной оси очень крутая: с каждым делением размеры возрастают в 10 раз.


Люди думали, что всё видимое — это и есть всё существующее, и высокомерно помещали себя в центр мироздания. Таким образом, недооценка была лейтмотивом наших поисков понимания космоса. И всё же рис. 2.1 отражает и другую мысль, вдохновляющую меня: мы многократно недооценивали не только размеры космоса, но и силу человеческого разума, способного его понять. У наших пещерных предков был такой же большой мозг, как и у нас, и поскольку они не тратили вечера на просмотр телевизора, я уверен, что они задавались вопросами вроде: «Что это там такое в небе?» или «Откуда это всё взялось?» Они пересказывали друг другу красивые мифы и легенды, но им и в голову не приходило, что они способны найти настоящие ответы на эти вопросы. И что секрет заключается не в освоении полётов в космос для изучения небесных тел, а в том, чтобы позволить взлететь разуму.

Нет лучшей гарантии неудачи, чем признать, что успех невозможен, а значит, не надо и пытаться. Задним числом кажется, что многие великие прорывы в физике могли случиться раньше, поскольку необходимые инструменты уже существовали. Проведём аналогию с хоккеем: люди не забивали шайбу в пустые ворота просто потому, что считали свою клюшку сломанной. В следующих главах я поделюсь впечатляющими примерами того, как Исаак Ньютон, Александр Фридман, Георгий Гамов и Хью Эверетт преодолели эту неуверенность. Мне очень нравится высказывание нобелевского лауреата Стивена Вайнберга: «Так часто бывает в физике — ошибка не в том, что мы слишком серьёзно относимся к своим теориям, а в том, что не воспринимаем их достаточно серьёзно».

Сначала выясним, как определить размеры Земли и расстояние до Луны, Солнца, звёзд и галактик. На мой взгляд, это одна из самых ярких детективных историй всех времён, которая, можно сказать, породила современную науку. Так что я горю желанием поделиться ею с вами, как закуской перед основным блюдом — последними достижениями космологии. Как вы увидите, первые четыре вопроса не требуют ничего сложнее измерений углов. Они также проиллюстрируют, насколько важно удивляться, казалось бы, банальным наблюдениям — ведь они могут оказаться ключевыми уликами.


Рис. 2.2. Наша родина — это часть планеты (слева), которая является частью Солнечной системы, которая является частью Галактики (посередине слева), которая является частью паттерна скоплений галактик (посередине справа), которая является частью наблюдаемой Вселенной (справа), которая может быть частью одного или более уровней параллельных вселенных.

Размеры Земли

С древности люди замечали, что у корабля, уходящего за горизонт, корпус исчезает из виду раньше парусов. Это наводило на мысль, что поверхность океана искривлена и что Земля имеет сферическую форму, подобно Солнцу и Луне. Древние греки обнаружили прямое тому подтверждение, заметив, что Земля во время лунного затмения отбрасывает на Луну круглую тень (рис. 2.3). Хотя размеры Земли нетрудно оценить по виду парусных судов,[5] Эратосфен около 2,2 тыс. лет назад выполнил более точные измерения, догадавшись, как воспользоваться для этого измерением углов. Он знал, что в египетской Сиене в день летнего солнцестояния Солнце в полдень оказывалось прямо над головой, однако в Александрии, расположенной на 794 км севернее, оно в это время находилось на 7,2° южнее зенита. Отсюда учёный вывел, что перемещение на 794 км соответствует прохождению 7,2° из 360° окружности Земли, а значит, длина этой окружности составляет около 794 км × 360° / 7,2° ≈ 39,7 тыс. км, что удивительно близко к современному значению (40 тыс. км).


Рис. 2.3. Во время лунного затмения Луна проходит сквозь тень, отбрасываемую Землёй (вверху). Более двух тысяч лет назад Аристарх Самосский сравнил размер Луны с размером земной тени во время лунного затмения и верно определил, что Луна примерно в 4 раза меньше Земли. (Мультиэкспозиционная фотография Скотта Иварта.)


Занятно, что Христофор Колумб глубоко заблуждался, положившись на позднейшие, менее точные расчёты и перепутав арабские мили с итальянскими, отчего пришёл к выводу, что ему нужно проплыть всего 3,7 тыс. км, чтобы достичь Востока, тогда как действительное расстояние составляло 19,6 тыс. км. Ясно, что он не получил бы средства на экспедицию, если бы сделал правильные расчёты, и, очевидно, он бы не выжил, если бы ему не подвернулась Америка. Так что иногда везение оказывается важнее правоты.

Расстояние до Луны

Затмения долго порождали страх, трепет и мифы. (Колумб, попав на Ямайке в затруднительное положение, сумел испугать аборигенов, «предсказав» лунное затмение 29 февраля 1504 года.) Однако затмения дают и замечательную возможность оценить размеры космоса. Аристарх Самосский заметил (рис. 2.3): когда Земля оказывается между Солнцем и Луной и происходит лунное затмение, тень Земли, падающая на Луну, имеет искривлённый край, причём круглая тень Земли в несколько раз больше Луны. Аристарх также понимал, что эта тень немного меньше самой Земли, поскольку Земля меньше; он учёл это в своих вычислениях и пришёл к выводу, что Луна примерно в 3,7 раза меньше Земли. Поскольку Эратосфен уже определил размер Земли, Аристарх просто поделил его на 3,7 и получил размеры Луны! По-моему, именно тогда человеческое воображение наконец оторвалось от Земли и начало завоёвывать космос. Великое множество людей до Аристарха смотрело на Луну, но он первым смог определить её размеры. Он совершил открытие благодаря силе своей мысли, а не полёту на ракете.

Один научный прорыв нередко ведёт к следующему. Определение размеров Луны сразу позволило определить расстояние до неё. Вытяните перед собой руку и посмотрите, какие предметы вы можете заслонить мизинцем. Угол, который он закрывает, составляет около 1°, и это примерно вдвое больше, чем нужно, чтобы закрыть Луну — проверьте сами, когда её увидите. Чтобы объект перекрыл угол в полградуса, расстояние до него должно быть примерно в 115 раз больше его размеров. Если, глядя из окна самолёта, вы можете половиной мизинца закрыть 50-метровый (олимпийского размера) плавательный бассейн, то вы находитесь на высоте 115 × 50 м = 6 км. Аристарх рассчитал, что расстояние до Луны в 115 раз больше её размера, что дало значение в 30 раз больше диаметра Земли.

Расстояние до Солнца и планет

А что можно сказать о Солнце? Попробуйте закрыть его мизинцем, и вы увидите, что оно перекрывает почти такой же угол, как и Луна: около половины градуса. Очевидно, что оно дальше Луны, поскольку во время солнечных затмений Луна закрывает его от нас (хотя и чуть-чуть), но насколько оно дальше? Это зависит от его размеров: например, если оно втрое больше Луны, то, чтобы перекрывать тот же угол, ему следует находиться в три раза дальше.

Аристарх Самосский смог дать разумный ответ и на этот вопрос. Солнце, Луна и Земля образуют прямоугольный треугольник в моменты, когда Луна оказывается в фазе первой или последней четверти, то есть когда Солнце освещает ровно половину обращённой к нам стороны Луны (рис. 2.4). Аристарх оценил угол между Луной и Солнцем в этот период время в 87°.[6] Таким образом, учёный узнал длину стороны Земля — Луна треугольника Земля — Луна — Солнце и смог с помощью тригонометрических формул вычислить длину стороны Земля — Солнце, то есть расстояние между Землёй и Солнцем. Он пришёл к выводу, что Солнце находится примерно в 20 раз дальше Луны, а значит, оно в 20 раз крупнее её. Иными словами, Солнце имело колоссальный размер — в пять с лишним раз больше Земли в поперечнике. Это подтолкнуло Аристарха к тому, чтобы (задолго до Николая Коперника) выдвинуть гелиоцентрическую гипотезу: он чувствовал, что разумнее считать Землю обращающейся вокруг более крупного Солнца, нежели наоборот.


Рис. 2.4. Измерив угол между Солнцем и Луной в фазе первой или последней четверти, Аристарх Самосский получил возможность оценить расстояние до Солнца. (На этом рисунке масштаб не соблюдён: Солнце примерно в 100 раз больше Земли и примерно в 400 раз дальше от нас, чем Луна.)


Эта история одновременно вдохновляет и предостерегает. Она учит тому, как важно найти оригинальный подход и верно оценивать погрешности измерений. Последнее у древних греков получалось хуже, и Аристарх, к сожалению, не исключение. Оказалось очень трудно определить, когда Луна освещена ровно на 50 %, а правильное значение угла между Луной и Солнцем в этот момент составляет не 87°, а около 89,85°, что очень близко к прямому углу. Это делает треугольник (рис. 2.4) очень длинным и узким: в действительности Солнце почти в 20 раз дальше, чем подсчитал Аристарх, и примерно в 109 раз больше Земли в диаметре (так что в объёме Солнца уместилось бы более 1 млн таких планет, как Земля). К сожалению, эта грубая ошибка оставалась неисправленной в течение 2 тыс. лет. Когда за дело взялся Коперник, рассчитавший размеры и форму Солнечной системы, он правильно определил взаимное расположение и относительные размеры планетных орбит, но масштаб его модели Солнечной системы был занижен примерно в 20 раз. Это всё равно, что перепутать настоящий дом с кукольным.

Расстояние до звёзд

А что можно сказать о звёздах? Насколько они далеки? И что они такое? Я думаю, что это одно из величайших в истории «глухих» детективных дел. Определение расстояний до Луны и Солнца было впечатляющим достижением, но тут, по крайней мере, имелась в качестве подсказки некоторая информация: они интересным образом меняли своё положение на небе, их форму и угловые размеры можно было измерять. Но звезда представляется совершенно безнадёжным случаем! Она кажется тусклой белой точкой. Вы присматриваетесь и видите… всю ту же тусклую белую точку без малейших признаков формы и размера. Просто светящуюся точку. И, похоже, звёзды не перемещаются по небу, если не считать видимого вращения всех звёзд вместе, которое является иллюзией, вызванной вращением Земли.

Кое-кто в древности считал, что звёзды — это маленькие отверстия в чёрной сфере, сквозь которые просачивается далёкий свет. Джордано Бруно, напротив, предположил, что звёзды подобны нашему Солнцу, но находятся очень далеко и, возможно, обладают собственными населёнными планетами. Эти рассуждения не понравились католической церкви, и Бруно сожгли в 1600 году на костре.

В 1608 году неожиданно появился проблеск надежды: был изобретён телескоп. Галилео Галилей быстро его усовершенствовал и, посмотрев на звёзды, увидел… лишь белые точки. Возвращаемся на исходную позицию. У меня есть звукозапись, на которой я ребёнком играю «Ты свети, звезда, мерцая» на пианино моей бабушки Сигне. Ещё недавно, в 1806 году, когда эта песня появилась, строчка «Кто ты в тёмной вышине?» продолжала волновать многих, и никто не мог, положа руку на сердце, сказать, что он знает ответ.

Если звёзды — это действительно далёкие солнца, как предполагал Бруно, то они должны находиться гораздо дальше Солнца, чтобы светить так тускло. Но насколько дальше? Это зависит от того, насколько ярки они на самом деле. Спустя 32 года после сочинения песенки немецкий математик и астроном Фридрих Бессель сделал открытие. Выставьте вверх большой палец на расстоянии вытянутой руки и несколько раз попеременно закройте левый и правый глаз. Палец будто перепрыгивает вправо и влево на определённый угол относительно далёких предметов. Теперь поднесите палец немного ближе к глазам, и вы заметите, что угловая величина «прыжка» выросла. Астрономы называют эту угловую величину параллаксом, и, очевидно, её можно применить, чтобы определить расстояние до пальца. На практике вам не требуется заниматься математическими вычислениями, поскольку мозг выполняет их без усилий, и вы этого даже не замечаете. Тот факт, что два глаза фиксируют разные углы для объектов на разном расстоянии, существенен для понимания системы восприятия дальности в мозге, наделяющей нас трёхмерным зрением.

Если бы наши глаза были расставлены шире, мы лучше воспринимали бы глубину на больших расстояниях. В астрономии можно применить тот же метод параллакса, притворяясь, будто мы гиганты с глазами, разнесёнными на 300 млрд м, что соответствует диаметру земной орбиты вокруг Солнца. Это можно сделать, сравнивая телескопические фотографии с шестимесячным интервалом, за который Земля перемещается на противоположную сторону своей орбиты. Бессель заметил, что положения звёзд, за исключением одной, на снимках кажутся одинаковыми. Это звезда 61 Лебедя. Она, в отличие от других, смещалась на небольшой угол, показывая тем самым, что расстояние до неё почти в 1 млн раз больше, чем до Солнца, — это так далеко, что звёздному свету требуется 11 лет, чтобы достичь нас, тогда как солнечный свет доходит к нам за 8 минут.

Вскоре были измерены параллаксы других звёзд, так что стали известны расстояния до многих из них. Если вы ночью проследите за удаляющимся автомобилем, яркость его габаритных огней будет убывать обратно пропорционально квадрату расстояния до него (вдвое дальше — вчетверо слабее). Теперь, когда Бессель знал расстояние до звезды 61 Лебедя, он воспользовался законом обратных квадратов для вычисления её светимости. Полученный результат оказался сопоставим со светимостью Солнца, что с запозданием подтвердило правоту Джордано Бруно.

Почти одновременно, в 1814 году, немецкий оптик Йозеф фон Фраунгофер изобрёл спектроскоп, позволивший раскладывать белый свет на цвета и измерять их. Фраунгофер открыл в радуге загадочные тёмные линии (рис. 2.5) и выяснил, что их точные положения в цветовом спектре зависят от того, из чего сделан источник света, то есть они оказались своего рода спектральными отпечатками пальцев. В последующие десятилетия были измерены и занесены в каталоги спектры многих распространённых веществ. С помощью этой информации можно показать замечательный фокус на вечеринке и впечатлить друзей, определяя, что светится в их фонариках, лишь анализируя испускаемый ими свет и даже не подходя близко. Спектр солнечного света неожиданно показал, что Солнце, пылающий шар в небесах, содержит водород и некоторые другие элементы, хорошо известные на Земле. Более того, когда собранный телескопом звёздный свет изучили с помощью спектроскопа, оказалось, что звёзды в первом приближении состоят из той же смеси газов, что и Солнце. Это закрепило победу Бруно: звёзды — это далёкие солнца, сходные как по выделяемой энергии, так и по составу. Так за считанные десятилетия звёзды превратились из непостижимых белых точек в гигантские шары горячего газа, химический состав которых можно определить.


Рис. 2.5. Радуга, сфотографированная моим сыном Александром, ведёт не к горшку с золотом, а к золотой жиле информации об устройстве атомов и звёзд. В гл. 7 мы узнаем, что соотношение интенсивности различных цветов объясняется тем, что свет состоит из частиц (фотонов), а положение и ширину многих тёмных линий можно вычислить с помощью квантово-механического уравнения Шрёдингера.


Спектр — это настоящая золотая жила астрономической информации, и всякий раз, когда вам приходит в голову, что вы выжали из него всё, что можно, оказывается, что в нём закодировано что-нибудь ещё. Спектр позволяет измерить температуру объекта, не прикасаясь к нему термометром. Вы и без прикосновения знаете, что раскалённый добела кусок металла горячее раскалённого докрасна, и, аналогично, беловатые звёзды горячее красноватых. С помощью спектроскопа температуру можно определять очень точно. В качестве неожиданного бонуса теперь эта информация позволяет определить размеры звезды, подобно тому, как отгадывание одного слова в кроссворде помогает отгадать другое. Температура показывает, сколько света испускает каждый квадратный метр звёздной поверхности. Поскольку можно вычислить общее количество испускаемого звездой света (по расстоянию до неё и видимому блеску), теперь можно определить и площадь поверхности звезды в квадратных метрах и узнать, насколько она велика.

Спектр звезды также содержит скрытые подсказки о её движении, заключающиеся в небольших сдвигах частоты (цвета) излучения за счёт так называемого эффекта Доплера — того самого, который превращает сигнал проезжающего мимо автомобиля в характерное «вжи-и-и-и-у-у-у…»: частота выше, когда автомобиль приближается к вам, а затем становится ниже, когда он начинает удаляться. В отличие от Солнца, большинство звёзд состоит в устойчивых парных отношениях, кружась друг вокруг друга по постоянной орбите. Часто это кружение можно заметить благодаря эффекту Доплера, который заставляет спектральные линии звёзд двигаться взад и вперёд при каждом обороте. Величина этого смещения показывает скорость движения, а наблюдая за двумя звёздами, можно иногда измерить расстояние между ними. В совокупности эта информация позволяет показать ещё один замечательный фокус: мы можем взвешивать звёзды, не помещая их на весы, а применяя ньютоновы законы движения и тяготения для вычисления того, насколько массивными должны быть звёзды, чтобы двигаться по наблюдаемым орбитам. В некоторых случаях доплеровские смещения позволяют обнаружить планеты, обращающиеся вокруг звезды. Если планета проходит на фоне звезды, небольшое уменьшение звёздного блеска позволяет определить размер планеты, а небольшое изменение в спектральных линиях показывает, есть ли у планеты атмосфера и из чего она состоит. Спектры — это благодатный дар природы. Определение ширины спектральных линий у звёзд заданной температуры позволяет измерить газовое давление. А по тому, как спектральные линии расщепляются на две или более линий, можно измерить напряжённость магнитного поля на поверхности звезды.

Подведём итоги. Вся имеющаяся у нас информация о звёздах получена от доходящего до Земли слабого света, однако вдумчивая детективная работа позволила нам извлечь из него сведения о расстоянии до звёзд, их размерах, массе, составе, температуре, давлении, магнетизме и о наличии у них планетных систем. То, что человеческий разум смог узнать всё это из, казалось бы, непостижимых белых точек, — это триумф, который, я думаю, заставил бы гордиться собой даже Шерлока Холмса и Эркюля Пуаро!

Расстояние до галактик

Моя бабушка Сигне умерла в возрасте 102 лет. Я некоторое время раздумывал о её жизни, и меня поразило, что она выросла в другом мире. Когда она пошла в колледж, известная нам Вселенная представляла собой лишь Солнечную систему и облако звёзд вокруг неё. Она и её друзья, вероятно, думали об этих звёздах как о невообразимо далёких объектах: свет от ближайших из них идёт к нам несколько лет, а от самых далёких — тысячи лет. Всё это по современным меркам может считаться нашим уютным космическим двориком.

Если в её колледже были астрономы, они могли рассуждать о туманностях — размытых облакоподобных объектах в ночном небе, среди которых попадались красивые спиральные формы, вроде изображений на знаменитом полотне Ван Гога «Звёздная ночь». Что это за объекты? Многие астрономы считали их скучными межзвёздными газовыми облаками, но некоторые придерживались более радикальных взглядов — они полагали, что это «островные вселенные», которые сегодня мы называем галактиками — огромные группы звёзд, находящиеся столь далеко, что они не видны по отдельности в телескоп и поэтому кажутся туманной дымкой. Чтобы разрешить этот спор, астрономам требовалось измерить расстояние до некоторых туманностей. Но как это сделать?

Метод параллакса, который работал для ближайших звёзд, не годился для туманностей: они настолько далеко, что их параллактические углы слишком малы для измерения. Как ещё можно измерить большие расстояния? Если посмотреть в телескоп на далёкую лампочку, можно заметить, что на ней напечатано «100 ватт», и это всё, что вам нужно: просто воспользуйтесь законом обратных квадратов и вычислите, как далеко она должна находиться, чтобы иметь наблюдаемую яркость. Астрономы называют такие полезные объекты известной светимости стандартными свечами. Применяя вышеупомянутый детективный метод, астрономы с сожалением обнаружили, что звёзды вовсе не стандартизированы: некоторые светят в миллион раз ярче Солнца, а другие в тысячу раз слабее. Однако если вы сможете, наблюдая звезду, увидеть, что на ней написано «4 × 1026 ватт» (корректная маркировка для нашего Солнца), у вас появится стандартная свеча и возможность вычислить расстояние до неё точно так же, как до лампочки. К счастью, природа снабдила нас особым типом полезных в этом отношении звёзд — их называют цефеидами. Это переменные звёзды, светимость которых колеблется во времени из-за того, что они меняются в размерах. В 1912 году гарвардский астроном Генриетта Соун Ливитт обнаружила, что темп их пульсаций может служить ваттметром: чем больше дней проходит между двумя последовательными пульсациями, тем больше излучается ватт световой энергии.

У цефеид есть также то преимущество, что, будучи достаточно яркими, они видны на огромных расстояниях (некоторые из них светят в 100 тыс. раз ярче Солнца). Американский астроном Эдвин Хаббл открыл несколько таких звёзд в Туманности Андромеды — диффузном пятнышке размером с Луну, которое можно увидеть невооружённым глазом, если забраться подальше от городских огней. Используя калифорнийский телескоп Хукера (его 2,5-метровое зеркало было тогда крупнейшим в мире), он измерил периоды их пульсации, рассчитал с помощью формулы Ливитт, какой они обладают светимостью, сравнил с их видимым блеском и вычислил расстояния до них. Когда он рассказал о своих результатах на конференции в 1925 году, у многих отвисли челюсти: он доказал, что Туманность Андромеды — это галактика примерно в 1 млн световых лет от нас, в тысячу раз дальше самых далёких звёзд, которые моя бабушка видела на ночном небе! Теперь мы знаем, что Туманность Андромеды находится ещё дальше — примерно в 3 млн световых лет, так что Хаббл невольно продолжил традицию ошибочной недооценки расстояний, идущую от Аристарха Самосского и Коперника.

Хаббл и другие астрономы продолжали открывать всё более далёкие галактики. Они раздвинули наши горизонты с миллионов до миллиардов световых лет, а мы в гл. 5 раздвинем их до триллионов световых лет и даже дальше.

Что такое пространство?

Так тянется ли космос бесконечно? К вопросу можно подойти двояко: путём наблюдений и теоретически. Пока мы следовали первому подходу, рассматривая, как хитроумные измерения открывали всё более далёкие области космоса без видимых признаков конца. Однако и теоретики достигли значительного прогресса. Прежде всего, как может пространство не тянуться бесконечно? Я объяснил детям, что было бы странно вдруг встретить знак, как на рис. 2.6, предупреждающий о достижении конца космоса. Я размышлял об этом, когда сам был ребёнком: а что за этим знаком? Мне казалось, что беспокоиться о достижении конца космоса столь же глупо, как древним мореплавателям бояться упасть с края Земли. Так что я попросту заключил, что пространство бесконечно и тянется вечно. Ещё Евклид пришёл к выводу, что геометрия является частью математики и что бесконечное трёхмерное пространство можно описать столь же строго, как и другие математические структуры вроде числовых множеств. Древнегреческий учёный разработал красивую математическую теорию бесконечного трёхмерного пространства, а также его геометрических свойств, и люди долго считали её единственным логически возможным способом существования нашего физического пространства.


Рис. 2.6. Трудно представить себе, что пространство может быть конечным. Если оно где-то заканчивается, то что находится дальше, за его краем?


Однако в середине XIX века математики Карл Фридрих Гаусс, Янош Бойяи и Николай Лобачевский независимо друг от друга открыли, что существуют и другие логические возможности для однородного трёхмерного пространства. Бойяи в восторге писал отцу: «Из ничего я создал странный новый мир». Новые пространства подчиняются новым правилам: так, они более не обязаны быть бесконечными, каковым представлялось пространство Евклиду, а углы треугольника не обязательно дают в сумме 180°. Представьте себе треугольники на двумерных поверхностях трёхмерных фигур. Сумма трёх их углов больше 180° на сфере (рис. 2.7, слева), 180° на цилиндре (в середине) и меньше 180° на гиперболоиде (справа). Более того, двумерная поверхность сферы конечна, хотя на ней нет ничего похожего на край.

Этот пример показывает, что правила евклидовой геометрии могут нарушаться на поверхности, если она не плоская. Однако идеи Гаусса и других математиков были ещё радикальнее: пространство может быть искривлённым само по себе, даже если оно не является поверхностью чего-либо! Предположим, вы — слепой муравей, желающий знать, по какой из фигур на рис. 2.7 вы ползаете. Вы чувствуете себя так, будто живёте в двумерном пространстве, поскольку не можете выйти в третье измерение (оторваться от поверхности), но это не препятствует вашей детективной работе: вы по-прежнему можете определить прямую линию (как кратчайший путь между двумя точками), а значит, и суммировать величины трёх углов треугольника. Например, если вы получите 270°, то воскликнете: «Это больше 180°, значит, я на сфере!» Чтобы ещё больше впечатлить друзей-муравьёв, вы даже можете рассчитать, как далеко нужно пройти по прямой, чтобы вернуться в исходную точку. Иными словами, все обычные для геометрии объекты — точки, прямые, углы, кривые и т. д. — можно строго определить, оставаясь в двумерном пространстве безо всяких ссылок на третье измерение. Это означает, что математики могут строго определить кривизну двумерной поверхности, даже если третьего измерения не существует: двумерное пространство может быть искривлённым само по себе, не являясь поверхностью чего-либо.


Рис. 2.7. Если нарисовать треугольники на этих поверхностях, сумма их углов окажется больше 180° (слева), 180° (посередине) и меньше 180° (справа). Эйнштейн считал, что в нашем трёхмерном физическом пространстве для треугольников возможны все эти варианты.


Вероятно, математическое открытие неевклидовых пространств полтора столетия назад казалось большинству людей не более чем абстракцией, не имеющей практического отношения к нашему физическому миру. Затем Эйнштейн выдвинул общую теорию относительности, которая, по сути, утверждала, что мы — муравьи. Теория Эйнштейна позволяет нашему трёхмерному пространству быть искривлённым без всякого скрытого четвёртого измерения, в котором оно искривлялось бы. Так что на вопрос, в пространстве какого типа мы живём, нельзя ответить, исходя из одной логики, как надеялись сторонники Евклида. Решить эту задачу можно, лишь выполнив измерения, например построив в космосе огромный треугольник (скажем, из лучей света) и проверив, равна ли сумма его углов 180°. В гл. 4 я расскажу, как мы с коллегами развлекались, проделывая это. Ответ оказался близок к 180° для треугольников размером с Вселенную, но значительно превосходящим 180°, если большую часть треугольника занимает нейтронная звезда или чёрная дыра. Так что форма нашего физического пространства сложнее, чем в трёх примерах на рис. 2.7.

Вернёмся к детскому вопросу о конечности пространства. Мы видим, что теория Эйнштейна позволяет пространству быть конечным далеко не таким глупым способом, как на рис. 2.6: оно может быть конечным за счёт искривлённости. Например, если наше трёхмерное пространство искривлено подобно поверхности четырёхмерной гиперсферы, то, будь у нас возможность достаточно далеко уйти по прямой линии, мы в конце концов вернулись бы домой с противоположной стороны. Мы не упали бы с края трёхмерного пространства, поскольку у него нет края, как нет края и у сферы, по которой ползёт муравей (рис. 2.7).

В действительности, Эйнштейн позволяет нашему трёхмерному пространству быть конечным, даже если оно не искривлено. Цилиндр на рис. 2.7 в математическом смысле плоский: если нарисовать треугольник на бумажном цилиндре, сумма его углов составит 180°. Чтобы убедиться в этом, вырежьте из цилиндра треугольник: он ровно ляжет на стол. Со сферой или гиперболоидом это не получится сделать без складок или разрывов бумаги. Но хотя цилиндр на рис. 2.7 кажется плоским для муравья, ползущего по небольшому участку, цилиндр замкнут на себя: муравей может вернуться домой, обойдя его вокруг по прямой линии. Математики называют подобные характеристики связности пространства его топологией. Они дали определение плоскому пространству, замкнутому на себя по всем измерениям, и назвали такое пространство тором. Двумерный тор имеет такую же топологию поверхности, как у баранки. Эйнштейн допускает, что физическое пространство, в котором мы живём, представляет собой трёхмерный тор и является в таком случае плоским и конечным. Или бесконечным.

Обе эти возможности прекрасно согласуются с лучшей имеющейся у нас теорией о пространстве — общей теорией относительности Эйнштейна. Но какое оно? В гл. 4 и 5 мы найдём свидетельство того, что пространство всё-таки бесконечно. Но поиск ответа на детский вопрос приводит нас к другой проблеме: чем в действительности является пространство? Хотя все мы сначала думаем о пространстве как о чём-то физическом, образующем ткань нашего материального мира, теперь мы видим, что математики говорят о пространствах как о математических сущностях. Для них изучение пространства — то же самое, что изучение геометрии, а геометрия — просто часть математики. Вполне можно считать, что пространство — это математический объект в том смысле, что все внутренне присущие ему свойства — такие как размерность, кривизна и топология — математические. Мы рассмотрим этот аргумент в гл. 10.

В этой главе мы, изучив своё положение в пространстве, обнаружили, что Вселенная гораздо больше, чем казалось нашим предкам. Чтобы по-настоящему понять, что происходит на огромных расстояниях, можно вести наблюдения с помощью телескопов. Однако определить своё место в пространстве недостаточно. Нам необходимо знать и своё место во времени.

Резюме

• Раз за разом люди убеждались, что физическая реальность гораздо больше, чем мы представляли, что известный нам мир входит в состав куда более грандиозных структур: нашей планеты, Солнечной системы, Галактики, сверхскопления галактик и т. д.

• Общая теория относительности (ОТО) Эйнштейна допускает, что пространство может тянуться бесконечно.

• ОТО допускает альтернативные варианты: пространство конечно, но не имеет границы, так что если вы будете двигаться достаточно долго и быстро, то сможете вернуться с противоположной стороны.

• Ткань нашего физического мира, пространство само по себе может быть чисто математическим объектом в том смысле, что все имманентно присущие ему свойства (размерность, кривизна и топология) — математические.

Глава 3. Наше место во времени