Наталья Бехтерева – какой мы ее знали — страница 10 из 40

Оказалось, что в некоторых случаях больные совершали ошибки, то есть называли стимулы неправильно. Нас заинтересовал вопрос: что же отличает эти случаи ошибок от случаев правильного опознания?

К нашему удивлению, в базальных ганглиях были обнаружены нейроны, которые реагировали перед тем, как человек совершал ошибку и неправильно называл стимул. Важно отметить, что во многих случаях больные, у которых регистрировалась импульсная активность нейронов, даже не осознавали свои ошибки, то есть мозг «детектировал» ошибку лучше, чем это делал сам человек. Однако наиболее неожиданным и интригующим был факт обнаружения этих нейронов не в корковых образованиях (как это можно было бы ожидать, исходя из представлений о лидирующей роли коры в мыслительных процессах), а в подкорковых структурах мозга, в частности, в базальных ганглиях.

Это было вдвойне странным, поскольку в те годы было принято считать, что основная функция базальных ганглиев заключалась в контроле движений. Возникал вопрос: если это действительно так, то почему нейроны базальных ганглиев реагируют на ошибочное действие, которое еще не осуществлено и которое впоследствии даже не будет осознано человеком? Тогда это так и осталось загадкой. Сейчас мы знаем, что базальные ганглии участвуют не только в обеспечении движений, а вовлечены в сенсорные и когнитивные функции, причем одна из функций базальных ганглий – селекция действий. Под действиями в данном контексте я подразумеваю не только просто движения, но и сенсорно-когнитивные действия, например, принятие решения о смысловой значимости стимула.

Работы по детекции ошибок того периода были представлены в двух публикациях: одна из них появилась в Докладах Академии наук СССР, другая – в международном журнале «International Journal of Psychophysiology». Интересно, что последняя работа была признана одной из лучших за 1985 год. На публикации этих работ завершился очередной период исследований детекции ошибок.

Только спустя почти двадцать лет в зарубежных исследованиях с регистрацией когнитивных вызванных потенциалов и функциональной магниторезонансной томографии были получены данные, указывающие на существование системы детекции ошибок в могу человека. В этих исследованиях, в частности, было показано, что после совершения человеком ошибки определенная область коры головного мозга, называемая передней поясной извилиной, начинает подавать сигналы об ошибке. Следует, однако, заметить, что эти данные, полученные одновременно в нескольких лабораториях мира, в определенной степени отличались от работ Натальи Петровны, не повторяя, а дополняя полученные ею данные. Действительно, корреляты ошибок в этих работах были обнаружены после совершения ошибок. Рассматривая все эти данные с единой точки зрения, можно предположить, что в мозгу существуют как нейроны-детерминаторы ошибок, которые активны перед совершением ошибки, так и собственно нейроны-детекторы ошибок, которые активируются, когда человек, сравнивая планируемое действие с реальным, осознает, что совершил ошибку.

Начиная с 2004 года мы в нашей лаборатории совместно с другими центрами в Европе решили создать нормативную базу данных для параметров ЭЭГ и вызванных когнитивных потенциалов мозга. Это был новый виток спирали, начатый Натальей Петровной в шестидесятых годах. Дело в том, что Наталья Петровна начинала свою научную карьеру как электроэнцефалографист, то есть как специалист в области ЭЭГ. В шестидесятые годы в связи с появлением надежных усилителей потенциалов ЭЭГ стала рутинной методикой, позволяющей оценить функциональное состояние мозга человека. Практически во всех неврологических клиниках стали устанавливать электроэнцефалографы. Однако единственной надежной методикой анализа ЭЭГ в те годы был визуальный осмотр записи электроэнцефалограммы на бумаге. Электроэнцефалографисты проводили долгие часы, рассматривая многометровые «простыни» – бумажные записи ЭЭГ. Человеческий глаз – надежный прибор, он позволял выявить такие патологические паттерны, как дельта волны, спайки, спайки-медленные волны и другие. Однако он не позволял компрессировать эти данные в виде спектров, функций когерентности и уж не как не мог уловить в шумообразных флюктуациях воспроизводимые потенциалы, связанные с событиями. Поэтому использование ЭЭГ в те годы ограничивалось в основном областью эпилепсии, при которой в ЭЭГ больных можно было обнаружить биологические маркеры эпилепсии, такие как комплексы спайк-медленная волна. До сих пор в некоторых учебниках можно найти такое однобокое представление об ЭЭГ.

Именно поэтому, из-за ограниченности методики ЭЭГ, в семидесятых – восьмидесятых годах Наталья Петровна основное внимание уделяла импульсной активности нейронов. Вспоминаю беседу с ней на конгрессе Международной Организации по Психофизиологии в Праге в 1986 году. Тогда в нашей группе (В. А. Пономарев, А. В. Севостьянов, М. А. Кузнецов и автор этой статьи) наряду с импульсной активностью нейронов и сверхмедленной активностью мозга мы решили регистрировать электросубкортикограмму, то есть потенциалы мозга в диапазоне ЭЭГ (0.1–70 Гц). Когда я сообщил об этом Наталье Петровне, она сказала мне, что я могу заниматься всем, чем хочу, но сама она не верит в то, что этот параметр может дать больше, чем импульсная активность нейронов.

Вскоре после этого разговора мы стали регистрировать локальные вызванные потенциалы мозга и довольно быстро убедились, что внутримозговые потенциалы мозга отражают отдельный мир, совершенно отличный от того, который отображается в потенциалах, регистрируемых с поверхности головы. Важно подчеркнуть, что по своей способности описывать локальные явления мозга внутримозговая электроэнцефалограмма приближалась к детальному описанию, даваемому с помощью методики регистрации импульсной активности нейронов.

Это открытие мгновенно оценил известный финский психолог Ристо Наатанен, с которым в девяностые годы мы начали серию исследований интересного феномена мозга – негативности рассогласования. Этот феномен он впервые открыл в 1978 году, когда сравнил когнитивные вызванные потенциалы в так называемом ODDBALL тесте. В этом тесте испытуемый слышал равномерную последовательность звуковых тонов (типа метронома), которая иногда прерывалась предъявлением тона, несколько отличного от стандартного. Сравнивая ответы мозга на стандартные и девиантные (отличающиеся) тоны, он обнаружил, что девиантные тоны генерируют добавочную волну, которую он назвал негативностью рассогласования (mismatch negativity).

Надо сказать, судьба этого открытия оказалась более удачной, чем открытий, сделанных Натальей Петровной. На протяжении последних десятилетий были опубликованы тысячи статей, посвященных негативности рассогласования, это явление сейчас используется в клинике для предсказания выхода из комы больных, а также для ранней диагностики глухоты. Сам Ристо Наатанен осознавал эту несправедливость и всегда с большим уважением относился к Наталье Петровне, называя ее самым выдающимся физиологом нашего столетия. Именно с его представления Наталья Петровна была избрана почетным членом Академии наук Финляндии.

Используя внутримозговые электроды в совместных исследованиях с финскими коллегами, нам удалось не только локализовать источник генерации негативности рассогласования, но и вскрыть механизмы этого явления. Тогда мы использовали цифровую ЭЭГ и компьютерный метод усреднения. Это был шаг вперед по сравнению с шестидесятыми годами, когда когнитивные вызванные потенциалы получались простым наложением (суперпозицией) записей ЭЭГ друг на друга.

Напомню, что психологи и нейрофизиологи уже в семидесятых – восьмидесятых годах стали выделять последовательные стадии переработки информации. Так, в экспериментах на кошках и обезьянах были выделены стадия активации вентрального зрительного пути, отвечающая на вопрос «Что?» (то есть – что значит то или иное зрительное изображение), и стадия активации дорзального зрительного пути, отвечающая на вопросы «Где?» и «Как?» (то есть – где в пространстве находится данное зрительное изображение и как можно этим предметом манипулировать).

Но как разложить когнитивные вызванные потенциалы, регистрируемые с поверхности головы, на компоненты, отражающие эти различные стадии переработки информации, было неясно. В восьмидесятых годах мы попытались использовать факторный анализ и метод главных компонент. Однако ограничения, накладываемые этими методами, были нефизиологичными, поскольку вряд ли можно было предположить, что искомые волны будут ортогональны, как этого требовал, например, метод главных компонент.

И только в конце девяностых годов появились физиологически ориентированные методы обработки данных, совершившие революцию в электрофизиологии мозга. Сейчас мы являемся свидетелями ренессанса в электрофизиологии мозга. Существует, по меньшей мере, четыре причины этого возрождения электроэнцефалографии.

Первая причина связана с недавним появлением новых методов анализа ЭЭГ, таких как техника пространственной фильтрации при коррекции артефактов, анализ независимых компонент когнитивных ВП, электромагнитная томография и некоторые другие методы.

Вторая причина заключается в относительной дешевизне современных электроэнцефалографов. Действительно, в наши дни приборы для регистрации ЭЭГ стоят от нескольких тысяч до нескольких десятков тысяч долларов США, что совсем недорого по сравнению с многомиллионной стоимостью оборудования для МРТ и ПЭТ.

Третья причина – значительный рост наших познаний о механизмах генерации волн спонтанной ЭЭГ и функционального значения компонентов когнитивных вызванных потенциалов.

И наконец, четвертая причина – высокое временное разрешение сигналов ЭЭГ и когнитивных вызванных потенциалов мозга. Такое высокое временное разрешение принципиально не может быть достигнуто другими техниками нейрокартирования. Действительно, методы ЭЭГ и когнитивных вызванных потенциалов обеспечивают временное разрешение сигналов в несколько миллисекунд, в то время как методы позитронно-эмиссионной томографии и магниторезонансной томографии дают