Научная революция XVII века — страница 25 из 78

жна быть эксцентрической (по отношению к Солнцу) окружностью, центр которой делит пополам линию, соединяющую Солнце с центром равноуглового движения (эквантом). Более того, он показал, что вблизи апсид[3] время, затрачиваемое Землей на прохождение равных дуг орбиты, пропорционально расстоянию от Солнца. Затем Кеплер без колебаний распространил эту закономерность на всю орбиту.

Запомним эту первую гипотезу Кеплера на пути к созданию закона площадей: время пропорционально расстоянию от Солнца. Чтобы эта гипотеза в его собственных глазах выглядела правдоподобной, Кеплер должен был наполнить ее неким физическим содержанием. Согласно его представлениям, источником движения планет является Солнце, которое, вращаясь, испускает потек особых частиц (species immateriata), которые, сталкиваясь с планетой, движут ее по окружности. Однако поток таких частиц может обусловить лишь движение по такой окружности, у которой Солнце располагается в центре. Чтобы объяснить движение планеты по окружности, эксцентрической по отношению к Солнцу, Кеплер наделяет планету собственной способностью взаимодействия с потоком (species immateriata), которая дает ей возможность то удаляться, то приближаться к Солнцу. Действие этой способности, или силы («интеллигенции»), планеты аналогично действию руля у лодки: в зависимости от поворота руля лодка может плыть под различным углом к течению реки.

Кеплер пытался детально объяснить механизм действия собственной силы планеты с помощью модели, использующей движение по эпициклу и деференту (такая модель, как мы указывали ранее, эквивалентна модели эксцентрической окружности), но немедленно столкнулся с проблемой, решить которую был не в состоянии: как сила может двигать планету (и при том неравномерно!) вокруг центра, существующего лишь в воображении? Кеплеру было очевидно, что модель Птолемея не может здесь быть путем к объяснению, а другого пути пока он не видел. Отложив на время детали физического объяснения, он удовлетворился тем, что принял, что движение планет обусловлено двумя силами — силой, исходящей от Солнца посредством действия species immateriata, которая движет планету по окружности с Солнцем в центре, и собственной силой планеты, которая корректирует первоначальное движение таким образом, что планета начинает двигаться по окружности, эксцентрической по отношению к Солнцу.

Удовлетворившись на время этим вариантом физического объяснения, Кеплер обратился к проверке своей первой гипотезы (время пропорционально расстоянию), распространенной на всю орбиту Земли, путем сравнения расчетных и наблюденных значений истинной аномалии.[4] Кеплеру было чуждо понятие мгновенной скорости, и в соответствующих местах он всегда говорит о времени, требуемом для прохождения данной дуги, точно так же: время для него всегда представлялось не непрерывно текущей координатой, а последовательностью конечных временных промежутков (в полном соответствии с традицией средневековой физики).

К выводу закона расстояний
К теореме о мере суммы расстояний

Поскольку время пропорционально расстоянию, то любой промежуток времени, согласно Кеплеру, будет измеряться суммой всех расстояний, содержащихся в секторе соответствующей дуги. Затем рассуждения Кеплера можно представить следующим образом. Пусть окружность разделена на 360 равных частей, так что каждому элементарному углу Δβi (эксцентрической аномалии), равному π/180, соответствует расстояние ri от Земли до Солнца. Тогда время, потраченное планетой на перемещение β от афелия до любой точки G, относится ко времени полуоборота как сумма расстояний, содержащихся в эксцентрическом секторе GAC, к сумме расстояний, содержащихся в половине эллипса, т. е.

(радиус круга принимается за единицу), откуда

Замечательно, что это уравнение допускает следующую интегральную интерпретацию:

где r — расстояние от Земли до Солнца, β — эксцентрическая аномалия (измеренная от афелия), e — эксцентриситет и с — константа, равная

определяемая из условия: при β = π t = π.

Конечно, Кеплер не был в состоянии вычислить получающийся интеграл, но интересно то, что он все-таки связывал величины своих сумм с площадью фигуры, ограниченной конхоидой.

Процедура отыскания t для данной дуги оказалась, как можно видеть из полученного уравнения, весьма трудоемкой, ибо для этого необходимо было подставить в него значения сразу всех расстояний, и поэтому Кеплер стал искать другой путь оценки суммы расстояний. Естественно, что ему пришло в голову оценивать сумму расстояний, содержащихся в секторе эксцентрика, по его площади. Но при этом он отчетливо понимал, что площадь эксцентрического сектора не может быть точной мерой рассматриваемой суммы. В доказательство он приводил следующее рассуждение. Пусть дан сектор BmСА, соединим С с В и рассмотрим треугольник ABC. В нем сумма сторон АВ+АС всегда больше стороны ВС. Но суммы всех линий, аналогичных ВС, будут иметь мерой площадь круга, в то время как сумма всех прямых, аналогичных АВ и АС, представляющая полную сумму расстояний, будет больше первой. Поэтому площади эксцентрических секторов представляют всего лишь приближенную меру суммы расстояний.

Метод оценки суммы расстояний по площади сектора, указывает Кеплер, содержит две неточности: во-первых, предполагается, что орбита планеты есть окружность, во-вторых, что площадь эксцентрического сектора не является точной мерой суммы расстояний от Солнца. Однако он добавляет, что в главе 59 «Новой астрономии», где вводится эллиптическая орбита, эти ошибки уничтожаются «как по волшебству». Ряд комментаторов неправильно интерпретирует это утверждение Кеплера, полагая, что доказательство закона площадей в главе 59 основано на взаимно компенсирующихся ошибках. (Заметим к этому, что Деламбр, проверивший кеплеровские вычисления, обнаружил, что Кеплер действительно допустил ряд ошибок в расчетах, которые, взаимно уничтожившись, дали в конце концов правильный результат.) На самом деле ошибки, о которых говорит Кеплер (и те, о которых говорит Деламбр), не имеют отношения к корректности доказательства.

Смысл этого замечания Кеплера в том, что если принять орбиту за эллипс и выбрать точную меру суммы расстояний, то закон площадей, введенный неявно в главе 40 «Новой астрономии» в качестве приближенного закона, станет вполне точным. Однако к тому времени, когда Кеплер впервые осознал возможность использования площади эксцентрического сектора в качестве меры суммы расстояний, ни то, ни другое еще не было сделано. Он открыто призывал математиков присоединиться к нему в усилиях отыскать точную меру суммы расстояний, а пока принимал, что мера времени t, потребного для перемещения планеты по дуге CG, может быть выбрана как β + e∙sinβ, так как площадь сектора GCA есть ½ ∙ СР + e sin β). Более того, он указывал, что этот «неточный метод решения уравнения на основе физической гипотезы достаточен для орбиты Солнца или Земли».

Действительно, для орбиты Земли, обладающей относительно малым эксцентриситетом, наблюдения довольно прилично сходились с расчетами, но уже для Марса, у которого эксцентриситет в 5,5 раз больше, расхождение данных наблюдения с расчетами истинной аномалии, основанными на законе площадей и гипотезе круговой орбиты, получалось равным 8 минутам. Такое расхождение до Кеплера могло вполне считаться удовлетворительным, так как 10 минут было обычной точностью наблюдений во времена Коперника, но Кеплер не мог этим удовлетвориться. «Благодаря божественной щедрости нам был дарован столь скрупулезнейший наблюдатель в лице Тихо Браге, что его наблюдения доказывают ошибочность этого птолемеевского расчета для Марса с расхождением в 8 минут; нам следует с благодарностью принять этот подарок Господень и пестовать <его>… Теперь, поскольку невозможно не обратить на это внимание, одни эти восемь минут указывают путь к перестройке всей астрономии»[5] {6, III, с. 258}.

Получив расхождение в 8 минут, Кеплер заметил, что оно не могло возникнуть в результате ошибки в законе площадей: во-первых, оно было слишком большим, а во-вторых, — и это главное — оно было противоположно по знаку тому, которое должно было бы возникнуть из-за неточности в выборе меры суммы расстояний. Поэтому Кеплер пришел к выводу, что окружность не является истинной формой орбиты Марса. Сравнивая положения Марса, рассчитанные на основе гипотезы о круговой эксцентрической орбите, с тремя наблюденными положениями, он нашел, что эти наблюденные положения лежат внутри круга. Так Кеплер пришел к предположению, что орбитой планеты является овал.

Приняв, что орбитой Марса является овал, Кеплер столкнулся с необходимостью вычисления площадей секторов овала, чего он делать не умел. О задаче вычисления площадей секторов овала Кеплер писал Фабрициусу в июле 1603 г.: «Если бы фигура была точным эллипсом, то Архимеда и Аполлония было бы достаточно».

Единственное, что ему оставалось, это вычислять площади приближенно, заменив овал эллипсом. Так он и поступил. Надо отметить, однако, что эллипс, аппроксимирующий овал, не совпадал с истинной эллиптической орбитой, а помещался внутри нее. С другой стороны, Кеплер не был вполне уверен в правомочности такой аппроксимации, так как и без того площадь сектора являлась лишь приближенной мерой суммы расстояний, и в своем исследовании овальной орбиты предпочитал работать непосредственно с расстояниями.

В конце 1604 г. Кеплер пришел к выводу, что его предположение о данной овальной форме орбиты неверно, так как получались слишком большие ошибки в расчетах по сравнению с наблюдениями. Более того, оказалось, что для круга и для овала ошибки в значениях истинной аномалии получались численно равными и противоположными по знаку. Стало ясно, что истина должна находиться где-то посредине этих двух крайностей, а между окружностью и овалом как раз помещался эллипс, соответствующий истинной орбите Марса. Кеплер увидел это, но не придал этому никакого значения. Если бы он просто искал геометрическую кривую, удовлетворяющую данным наблюдений, он, безусловно, поступил бы иначе, и все его поиски закончились бы на этом этапе. Но Кеплер не был удовлетворен, потому что не мог принять гипотезу, не имеющую физического обоснования. А физических причин существования эллиптической орбиты он пока еще привести не мог. Поэтому он продолжал работать с овалом, хотя мысль об эллипсе, по-видимому, подсознательно уже присутствовала в процессе его исследований.