Научная революция XVII века — страница 37 из 78

Реконструкция прибора, который использовал Галилей для своих экспериментов, изображена на рисунке. Основной его частью была деревянная планка с желобом длиной около 2 м, сечением 10x15 см. Планка устанавливалась на столе над утлом 30° к горизонтали, который на 77,7 см возвышался под уровнем пола. С получившейся наклонной плоскости Галилей пускал массивный гладкий шар и отмечал точку его падения на пол. Позднее в «Беседах» он так описывал аналогичный прибор: «Вдоль узкой линейки или, лучше сказать, деревянной доски длиною около двенадцати локтей, шириною пол-локтя и толщиною около трех дюймов был прорезан канал шириною немного больше одного дюйма. Канал этот был прорезан совершенно прямым и, чтобы сделать его достаточно гладким и скользким, оклеен внутри возможно ровным и полированным пергаментом; по этому каналу мы заставляли падать гладкий шарик из твердейшей бронзы совершенно правильной формы» [16, II, с. 253].

Единицей измерения в этих экспериментах Галилею служил пунто, который, как это можно заключить из градуировки шкал пропорционального циркуля, сделанного Галилеем и хранящегося в Музее истории науки во Флоренции, равен 0,938 мм.

Документ f 116 представляет собой запись эксперимента, который Галилей проводил с помощью описанного прибора: он пускал шар по наклонной плоскости с различной высоты, отмеченной им как 300, 600, 800 и 1000 пунти над уровнем стола; в конце движения шар приобретал горизонтальное направление, и для каждой из высот Галилей отмечал точку, в которой шар касался пола. Эти расстояния, отсчитываемые от края стола, он отметил как 800, 1172, 1328 и 1500 соответственно.

Кроме этого, в документе содержится запись расчета, проделанного Галилеем, — он вычислил расстояния, которые шар, падая с различных высот, проходил по горизонтали. Расстояния рассчитывались в предположении, что горизонтальное движение было равномерным при использовании данных первого опыта (800 пунти при падении с высоты 300 пунти), а также квадратичной зависимости пути от времени. Пусть h1 и h2 — высоты, с которых шар последовательно скатывается с наклонной плоскости; s1 — расстояние, пройденное шаром по горизонтали при скатывании с высоты h1. Для того чтобы вычислить расстояние s2, соответствующее высоте h2, поступаем следующим образом.

Согласно Галилею, времена падения шара по вертикали и вдоль наклонной плоскости относятся как высота к длине наклонной плоскости, т. е. tверт./tн.п. = h/l. А поскольку опыты производятся на одной и той же наклонной плоскости, то это отношение сохраняется постоянным для всех высот и t1/t2 = h1/h2 где t1, t2 — времена движения шара по наклонной плоскости. Но если шар движется по наклонной плоскости, можно сказать, что он падает вдоль этой плоскости, и согласно закону квадратичной зависимости для пути падения, установленной Галилеем,

v12/v22=h1/h2, (1)

где v1, v2 — скорости, которые шар приобретает в конце движения по наклонной плоскости (ибо h ~ t2, a v ~ t и h ~ v2). С другой стороны,

s1/s2=v1t/v2t=v1/v2; s12/s22=v12/v22. (2)

Комбинируя (1) и (2), получаем:

s1/s2 = h1/h2

и

Вычисленные Галилеем горизонтальные пути для высот, равных 600, 800 и 1000 пунти, оказались равными соответственно 1131, 1306 и 1460 пунти, в то время как его собственный эксперимент дал для этих величин значения 1172, 1328 и 1500 пунти. Столь близкое совпадение данных эксперимента и результатов расчета дало возможность Галилею утверждать впоследствии, что движение по горизонтали сохраняется бесконечно долго и является равномерным. Наряду с вычислениями в документе f 116 содержится рисунок Галилея, изображающий траектории движения шара в его опытах. Без сомнения, эти кривые являются параболами, что подтверждается дальнейшими его записями.

Галилею легко было математически вывести параболическую форму траектории, поскольку он хорошо был знаком с параболами: его деятельность началась с изучения центра тяжести параболоидов вращения. В документе, хранящемся под номером f117 тома 72 его рукописей, приводится такой геометрический вывод: он рисует пересекающиеся горизонтальную и вертикальную прямые, затем откладывает по горизонтали равные отрезки, а по вертикали — отрезки, соответствующие квадратам. Проводя затем соответствующие горизонтальные и вертикальные прямые, он получает точки пересечения, которые и определяют параболу.

Итак, записи Галилея, относящиеся к 1608—1609 гг., дают нам основание утверждать, что к этому времени Галилей вывел теоретически и доказал экспериментально факт движения по параболе для тела, брошенного горизонтально. Подтверждение тому, что Галилей в действительности проводил эксперименты и интерпретация его записей, предложенная Дрейком, справедлива, мы находим в других документах, относящихся к этому же времени.

Дело в том, что данные, полученные Галилеем в одном из опытов, зафиксированных в документе f116, его не удовлетворили. Несколькими годами ранее он теоретически установил правило: если тело движется по наклонной плоскости в течение некоторого времени, а затем, приобретя горизонтальную скорость, падает, то путь, пройденный в свободном падении за то же время по горизонтали, будет вдвое больше первоначального пути вдоль наклонной плоскости. Чтобы проверить это правило, Галилей пускал шар с высоты 828 пунти на наклонной плоскости и отмечал путь, пройденный шаром по горизонтали в свободном падении также с высоты 828 пунти. Так как угол наклона плоскости равнялся 30°, он был вправе ожидать, что, согласно его правилу, путь этот должен был бы быть равен 2x868, т. е. 1656 пунти, однако в опыте он получил значение 1340 пунти (при угле 30° высота вдвое меньше длины наклонной плоскости, следовательно, вдвое меньшее время требуется шару для падения по высоте, чем вдоль плоскости; поэтому, согласно правилу Галилея, при высоте плоскости, равной 828 пунти, шар пройдет по ней расстояние 1656 пунти за вдвое большее время, чем то, за которое он упадет затем на пол с высоты, также равной 828 пунти, пройдя по горизонтали расстояние, также равное 1656 пунти).

Неудовлетворенный расхождением эксперимента (1340 пунти) и теории (1656 пунти), Галилей, по-видимому, приписал его влиянию дефлектора, т. е. закругления, с помощью которого шару придается горизонтальное направление, и решил провести опыты без дефлектора. В действительности ошибка определялась тем, что для тяжелого бронзового шара, который использовался в опытах Галилеем, не справедлива в точности пропорциональность времен отношению высоты и длины наклонной плоскости, так как лишь 5/7 потенциальной энергии шара превращается в кинетическую энергию горизонтального движения, а 2/5 превращается в кинетическую энергию вращения. Но Галилей этого знать не мог и решил обойтись без дефлектора. Запись этих опытов с наклонной плоскостью, где шар, прокатившись по плоскости, падал под углом к горизонту, содержится в документе под номером f114 того же 72 тома галилеевских рукописей, хранящихся в Национальной библиотеке во Флоренции.

В этом отрывке содержится лишь запись экспериментальных данных, так как Галилей еще не знал, как рассчитывается путь, пройденный по горизонтали, для тела, брошенного под углом к горизонту. Галилей приводит лишь ряд цифр, обозначающих величину горизонтального пути, пройденного шаром при падении с различных высот. В 1975 г. Стиллман Дрейк и Джеймс Маклечлан повторили эксперименты Галилея и получили прекрасное совпадение с результатами Галилея [17].

Эти данные убедительно доказывают, что Галилей уделял большое внимание эксперименту, тщательно продумывал опыты и рассматривал эксперимент как необходимое подтверждение теории. Опыты, проведенные им в 1608—1609 гг., послужили экспериментальной основой его представления об инерциальном движении, позволив ему сделать одновременно вывод, что траекторией горизонтально брошенного снаряда является парабола.

4

Великий Кеплер научил людей «измерять небеса». И почти одновременно с выходом в свет его «Новой астрономии» в истории науки произошло другое замечательное событие: Галилей направил телескоп на звездное небо, началась новая эпоха в наблюдательной астрономии, которая непредсказуемо расширила наши представления о Вселенной.

Изобретение телескопа, относящееся, по-видимому, к концу первого десятилетия XVII в., принято считать случайным открытием. Таким оно и было, если под этим понимать, что человек, первым построивший телескоп, не намеревался с его помощью наблюдать звездное небо. Но можно посмотреть на это событие и с другой стороны, и тогда в появлении телескопа можно увидеть закономерность.

Дело в том, что конец XVI и начало XVII в.— это период, когда в среде людей, так или иначе связанных с научными исследованиями, все сильнее обнаруживается стремление сделать науку полезной. Мысль о том, что результаты научных исследований могут и должны служить основой улучшения условий человеческого существования,— один из главных результатов эпохи Возрождения. К такому выводу приводили различные интеллектуальные тенденции. Гуманистическая традиция прославляла ученого-ремесленника, отбросившего бесплодные схоластические упражнения ради реального дела. Наука и практика в рамках этой традиции рассматривались как взаимосвязанные и взаимодополняющие области человеческой деятельности. Ярким примером этому служит личность Леонардо, соединявшего в себе гений философа и инженера, математика и живописца. Он говорил, что науки бессмысленны и полны ошибок, если они возникли не из эксперимента — «матери всякой определенности» — и если они не заканчиваются экспериментом, ясным и доказательным. С другой стороны, только наука дает определенность и силу. Те, кто полагаются на практику без науки, подобны морякам, отправляющимся в плавание без руля и компаса. С этим мнением Леонардо перекликаются взгляды находившегося в русле герметической традиции Джован Батисты Порты, рассматривавшего науку как магическое искусство. Он говорил, что идеалом человека является личность, которая делает, чтобы знать, и знает, чтобы делать [18, с. 41].