Второй довод против суточного вращения Земли является предметом гораздо более внимательного и подробного рассмотрения. По мнению Сальвиати, это самое сильное возражение его противников. Действительно, говорит он, «ведь если бы Земля обладала бы суточным обращением, то башня, с вершины которой дали упасть камню, перенесется обращением Земли, пока падает камень, на много сотен локтей к востоку, и на таком расстоянии от подножья башни камень должен был бы удариться о Землю» [16, I, с. 224]. Аналогичное явление можно наблюдать, если бросать свинцовый шар с мачты движущегося корабля. «Когда корабль движется, то место падения шара должно будет находиться на таком удалении от первого (т. е. от подножия мачты.— В. К.), на какое корабль ушел вперед за время падения свинца» (Там же).
Выход из этого затруднения также хорошо известен Галилею. Здесь он неясно использует принцип независимости движений, а также принцип относительности движения, который впоследствии он изложит весьма пространно. Сальвиати говорит, что при падении камня с вершины башни его движение «слагалось бы из двух, а именно из того, которым он отмеривает башню (т. е. движения по вертикали, свободного падения. — В. К.), и из другого, которым он за ней следует (т. е. суточного вращения Земли, в котором участвует и башня, и камень.— В. К.). Из такого сложения вытекало бы, что камень описывает не простую прямую и отвесную линию, а наклонную, и, может быть, не прямую» [16, I, с. 238]. При этом Галилей прекрасно знает, что относительно неподвижной системы координат камень опишет параболу — это он выяснил не позднее 1608 г., но здесь он решает не вдаваться в математические или экспериментальные доказательства этого факта, который поясняет лишь качественно.
Интересно, что Галилей-Сальвиати в этом споре с Симпличио относительно камня, падающего с мачты движущегося корабля, ведет себя так же, как падуанский профессор Кремонини, его друг и неизменный оппонент в космологических вопросах, который отказался смотреть в телескоп Галилея, ибо, согласно его представлениям о мироздании, ничего нового он увидеть там не мог. Точно так же и Сальвиати на вопрос Симпличио, как же он берется настаивать на правильности своего утверждения, если не проделал ни одного эксперимента для его подтверждения, отвечает: «Я и без опыта уверен, что результат будет такой, как я вам говорю, так как необходимо, чтобы он последовал» [16, I, с. 243]. Мы видим, что и Галилей, и Кремонини обладают одинаковым темпераментом, но их научная убежденность зиждется на разной основе, и в этом коренное отличие между университетской философией, базирующейся на тысячелетнем авторитете аристотелевской доктрины, и новой физикой Галилея, которая основывается — явно или неявно — на экспериментальной процедуре, не имеющей антецедентов в прошлом.
В продолжение дискуссии Второго дня Галилей критикует представление Аристотеля, что среда является причиной движения брошенного тела. Он говорит, что среда может только препятствовать движению, а не вызывать его. Это дает ему повод продолжить свои рассуждения о характере движения брошенных тел, а затем перейти к опровержению аргументов Птолемея против движения Земли вокруг собственной оси. Возражения Птолемея сводятся к тому, что, во-первых, птицы и облака, не связанные с Землей и потому ею не увлекающиеся, не испытывают никакого влияния вследствие ее движения с огромной скоростью, хотя они, очевидно, должны были бы отставать от нее; во вторых, «скалы, здания и целые города» должны были бы разрушиться вследствие центробежного эффекта при вращении.
Первый довод Птолемея опровергается Галилеем на том основании, что с физической точки зрения одушевленные предметы не отличаются от неодушевленных, и поэтому движение птиц не должно отличаться от движения камня — птица не может не касаться Земли, а как только это происходит, ей тотчас же передается суточное движение Земли. В следующем за этим рассуждении описывается мысленный эксперимент, объясняющий также и движение облаков. По сути дела он является красочным описанием того, что сегодня мы называем принципом относительности Галилея: физические законы инвариантны относительна систем отсчета, движущихся равномерно и прямолинейно.
Описание Галилея столь замечательно, что приведем его целиком: «Уединитесь с кем-либо из друзей в просторное помещение под палубой какого-нибудь корабля, запаситесь мухами, бабочками и другими подобными мелкими летающими насекомыми; пусть будет у вас там также большой сосуд с водой и плавающими в нем маленькими рыбками; подвесьте, далее, наверху ведерко, из которого вода будет падать капля за каплей в другой сосуд с узким горлышком, поставленный внизу. Пока корабль стоит неподвижно, наблюдайте прилежно, как мелкие летающие животные с одной и той же скоростью движутся во все стороны помещения; рыбы, как вы увидите, будут плавать безразлично во всех направлениях; все падающие капли попадут в поставленный сосуд, и вам, бросая какой-либо предмет, не придется бросать его с большей силой в одну сторону, чем в другую, если расстояния будут одни и те же; и если вы будете прыгать сразу двумя ногами, то сделаете прыжок на одинаковое расстояние в любом направлении. Прилежно наблюдайте все это, хотя у вас не возникает никакого сомнения в том, что, пока корабль стоит неподвижно, все должно происходить именно так. Заставьте теперь корабль двигаться с любой скоростью, и тогда (если только движение будет равномерным и без качки в ту или другую сторону) во всех названных явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно. Прыгая, вы переместитесь на полу на то же расстояние, что и раньше, и не будете делать больших прыжков в сторону кормы, чем в сторону носа, на том основании, что корабль быстро движется, хотя за то время, что вы будете в воздухе, пол под вами будет двигаться в сторону, противоположную вашему прыжку, и, бросая какую-нибудь вещь товарищу, вы не должны будете бросать ее с большей силой, когда он будет находиться на носу, чем когда ваше взаимное положение будет обратным; капли, как и - ранее, будут падать в нижний сосуд, и ни одна не упадет ближе к корме, хотя, пока капля находится в воздухе, корабль пройдет много пядей; рыбы в воде не с большим усилием будут плыть к передней, чем к задней части сосуда; настолько же проворно они бросятся к пище, положенной в какой угодно части сосуда; наконец, бабочки и мухи по-прежнему будут летать во всех направлениях, и никогда не случится того, чтобы они собрались у стенки, обращенной к корме, как если бы устали, следуя за быстрым движением корабля, от которого они были совершенно обособлены, держась долгое время в воздухе; и если от капли зажженного ладана образуется немного дыма, то видно будет, как он восходит вверх и держится наподобие облачка, двигаясь безразлично в одну сторону не более, чем в другую. И причина согласованности всех этих явлений заключается в том, что движение корабля обще всем находящимся на нем предметам, так же как и воздуху» [16, I, с. 286].
Так Галилей справляется и с возражением Птолемея относительно облаков. Отметим, что в современной трактовке принципа относительности мы говорим, что физические законы не изменяются безразлично к тому, описывают ли они события в покоящейся системе координат или движущейся равномерно и прямолинейно. У Галилея мы не встретим слова «прямолинейно», но это и понятно, ведь для него пока все движения круговые!
Мы видим, что на пути решения космологических проблем выкристаллизовывается физическая система Галилея, причем введенный им принцип относительности имеет в его глазах, помимо прочего, и методологическую ценность. Чтобы оправдать теорию Коперника, он вначале показывает, что «для порождения решительно одинаковых явлений безразлично, движется ли Земля и остается неподвижным весь остальной мир, или же Земля стоит неподвижно, а весь остальной мир движется тем же самым, движением» [16, I, с. 215]. Затем преимущество и предпочтительность теории Коперника доказываются уже с помощью критерия простоты — некоего варианта «бритвы Оккама»: «Природа не употребляет многих средств там, где она может обойтись немногими» (Там же). Этот постулат имеет, безусловно, применение, не ограничивающееся лишь защитой коперниканства; критерий простоты становится одним из фундаментальных критериев физической теории.
Гораздо большие трудности приходится преодолевать Галилею при попытке устранить второе возражение Птолемея против суточного вращения Земли: почему Земля не разрушается в результате центробежного эффекта. Галилей предлагает здесь два объяснения, ни одно из которых не является ни полностью правильным, ни исчерпывающим. Остается предположить все же, что для современников Галилея оба они казались достаточно убедительными.
Первый аргумент имеет в своей основе правильную идею, что тела на Земле удерживаются тяготением. Галилей называет это свойство тел gravità — тяжестью, и физический смысл этого понятия еще не вполне ясен. По мнению Галилея, то, что тела не срываются с поверхности Земли, обусловлено фактом, что любое тело отлетает по касательной к окружности вращения: «Таким образом, если бы камень, отброшенный вращающимся с огромной скоростью колесом, имел такую же естественную склонность двигаться к центру этого колеса, с какой он движется к центру Земли, то ему нетрудно было бы вернуться к колесу или, скорее, вовсе не удаляться от него, ибо раз в начале отрыва удаление столь ничтожно из-за бесконечной остроты угла касания, малейшего уклонения по направлению к центру колеса было бы достаточно, чтобы удержать его на окружности» [16, I, с. 294].
По-видимому, сам Галилей чувствует неудовлетворенность таким доказательством, потому что тут же он приводит другое объяснение, которое кажется более удовлетворительным с точки зрения повседневного опыта. Он говорит, что вращение, при котором полный оборот совершается за 24 часа, является столь медленным, что оно не может являться причиной какого-либо смещения предметов, участвующих в таком вращении, точно так же как камень не может слететь с колеса, вращающегося с такой скоростью. Ясно, что Галилей в этом пункте совершает ошибку — центробежная сила у него получается зависящей исключительно от угловой скорости [16, I, с. 311, 317].