Научная революция XVII века — страница 45 из 78

В этом отрывке замечательно также и то, что для науки оказывается необязательным достижение идеала на опыте — достаточно к нему приблизиться как можно ближе, и тогда доказательность утверждения следует с большой вероятностью. Если и можно в каком-то смысле говорить о платонизме Галилея, то это будет скорее платонизм наоборот: в рамках платоновской доктрины мир чувственно воспринимаемых вещей оказывается ложным, не соответствующим идеальному миру, который и есть подлинная реальность; для Галилея, напротив, мир ощущений это и есть реальный мир, который тем не менее допускает идеализацию. Говоря словами Сальвиати в «Диалоге», «наши рассуждения должны быть направлены на действительный мир (в оригинале: al mondo sensibile — на мир ощущений.— В.К.), а не на бумажный» [16, II, с. 211]. Нарисовав впечатляющую картину мысленного эксперимента, Галилей не проводит его, а лишь подробно рассказывает, как его можно провести. Мы не находим в дальнейшем обсуждении рассказа о том, как Галилей постепенно меняет плотность среды и измеряет соответственные скорости падающих тел. Вместо этого он останавливается на некоторых очевидных фактах, ссылку на которые считает, по-видимому, достаточной. Например, он указывает, что, наблюдая за падением шаров из свинца и слоновой кости в воздухе и в воде, легко заметить, что разница их скоростей в воде будет намного больше разницы скоростей в воздухе.

Но затем, чтобы подкрепить свой вывод, и без того кажущийся ему неоспоримым, он еще раз описывает опыт, который должен дать ответ на вопрос, зависит ли скорость падения от веса, но на этот раз он объясняет, каким образом опыт должен быть поставлен. Если просто бросать, скажем, с высокой башни шар из свинца и шар из пробки, то разница в скоростях падения будет чересчур велика из-за того, что пробковый шар будет испытывать слишком большое сопротивление воздуха, а если их бросать с небольшой высоты, разница будет неощутима. «Поэтому, — пишет Галилей,— я пришел к мысли повторить опыт с падением с малой высоты столько раз, чтобы, отмечая и складывая незначительные разницы, могущие обнаружиться во время достижения конца пути тяжелым и легким телом, получить в итоге разницу не только просто заметную, но и весьма заметную» [16, II, с. 181].

Галилей пытается избавиться от влияния среды посредством уменьшения скорости падения, но ему недостаточно для этого уменьшить высоту. «Затем, чтобы иметь дело с движением по возможности медленным, при котором уменьшается сопротивление среды, изменяющее явление, обусловливаемое простой силой тяжести, я придумал заставлять тело двигаться по наклонной плоскости, поставленной под небольшим углом к горизонту; при таком движении совершенно так же, как и при отвесном падении, должна обнаружиться разница, происходящая от веса. Идя далее, я захотел освободиться от того сопротивления, которое обусловливается соприкосновением движущихся тел с наклонной плоскостью. Для этого я взял в конце концов два шара — один из свинца, другой — из пробки, причем первый был в сто раз тяжелее второго, и прикрепил и подвесил их на двух одинаковых тонких нитях длиной в четыре или пять локтей; когда я затем выводил тот и другой шарик из отвесного положения и отпускал их одновременно, то они начинали двигаться по дуге круга одного и того же радиуса, переходили через отвес, возвращались тем же путем обратно и т. д.; после того, как шарики производили сто качаний туда и обратно, становилось ясным, что тяжелый движется столь согласованно с легким, что не только после ста, но после тысячи качаний не обнаруживается ни малейшей разницы во времени, и движение обоих происходит совершенно одинаково» [16, II, с. 181].

Итак, Галилей, наконец, дает полное доказательство того, что падение тела не зависит от веса тела. В этом доказательстве все вызывает восхищение: и сам метод постепенного поэтапного устранения помех, и простота конечного опыта, и более всего — сам результат! Ведь то, что получил Галилей в конце концов — это закон изохронизма маятника, гласящий, что период маятника не зависит от его массы, а зависит лишь от длины нити (точнее, Т = 2π∙√(l/g)). Формулу в таком виде получил позднее Гюйгенс, Галилей лишь указывал, «что длины маятников обратно пропорциональны квадратам чисел их качаний, совершаемых в течение определенного промежутка времени» [16, II, с. 190], т. е. Т2 ~ l. Действительно, независимость скорости падения от массы (веса) тела однозначно определяется тем свойством маятника, что его период также не зависит от массы (веса), и Галилей, который не мог вывести эту связь теоретически, тем не менее, интуитивно это мгновенно осознал. Более того, как следует из его дальнейших рассуждений, его не обескуражило, что скорости оказались в действительности неравными (так как амплитуды качаний получились у обоих маятников различными); он отнес эту разницу за счет влияния среды, в то время как изохронизм маятников счел за бесспорное доказательство своего тезиса.

Результат, полученный Галилеем, имел далеко идущие последствия. Поскольку вес и плотность, как было доказано, не оказывают влияния на свободное падение, стало возможным чисто кинематическое рассмотрение падения в терминах пути, времени, скорости и ускорения. Как указывает Макмаллин, «никогда ранее не было ясно, как мертоновская кинематическая геометрия может быть использована для исследования реального падения, поскольку невозможно было взять в расчет такие негеометрические величины, как вес и плотность. А предполагалось, что именно эти параметры определяют естественное движение — падение согласно формуле F/R. Показав, «что ускорение падения не зависит от веса, Галилей доказал применимость геометрического подхода к кинематике» [6, с. 17].

После того, как в дискуссиях Первого дня было показано, что падение тел не зависит ни от их веса, ни от — в идеальном случае — среды, Галилею представляется возможность рассматривать характеристики падения — скорость, ускорение и пройденный путь как чисто геометрические понятия. В Третьем дне он анализирует динамические закономерности, выводя их из чисто кинематических представлений. Так он приходит к доказательству закона падения, а в следующем, Четвертом дне — к закону параболического движения брошенного тела.

Как-то Макс Джеммер остроумно заметил, что «в новейшей теории первоначальные положения и аксиомы, несмотря на то, что они логически предшествуют выводам, эпистемологически следуют за ними» [24, с. 691]. Именно так поступает Галилей в выводе закона падения: он уже давно знает конечный результат и начинает его доказывать с помощью положения, которое эпистемологически, в развитии его творческой мысли, следовало из уже найденной им квадратичной зависимости. Речь идет о правиле средней скорости, которое хорошо уже было знакомо математическим схоластикам XIV в. и получило в дальнейшем известность как «мертонское правило».

Этот факт послужил основанием Пьеру Дюэму утверждать, что Галилей лишь переформулировал то, что было сделано два столетия до него Оремом. То, что такое утверждение неправильно, обусловливается, во-первых, тем, что Галилей пришел к закону падения, исходя не из мертонского правила, а из евдоксовой теории пропорций, а во-вторых, ученые Парижской школы, равно как и калькуляторы Оксфорда, никогда не применяли это правило к случаю действительного падения тел, или даже вообще к случаю любого действительного движения. Мертонское правило оставалось для них абстрактной закономерностью, применяемой в рамках теории интенсификации и ремиссии качеств. Аннелизе Майер подчеркивает, что для ученых Средневековья было чрезвычайно характерно понимание различия между тем, что мы наблюдаем в действительности, и тем, как мы говорим о том, что наблюдаем [1, с. 30]. В связи с этим существовало два подхода к понятию скорости. «С одной стороны, скорость можно было рассматривать как расстояние, проходимое в определенное время. Такое представление хорошо согласовалось не только с эмпирическим восприятием движения, но также и общим определением «velocitas». С другой стороны, скорость могла рассматриваться в контексте теории качеств как интенсивность движения» [1, с. 38].

К выводу правила средней скорости

Галилей был первым, кому пришла в голову мысль объединить эти два подхода. Суть того, что позднее будет названо «мысленным экспериментом», в этом и состоит. Конфигурации качеств Орема и его геометрическая интерпретация мертонского правила обрели у Галилея физический смысл. Обратимся теперь к тексту «Бесед».

Весь анализ падения основывается на следующем утверждении: «Теорема I. Предложение I. Время, в течение которого тело, вышедшее из состояния покоя и движущееся равномерно-ускоренно, проходит некоторое расстояние, равно времени, в течение которого это же расстояние было бы пройдено тем же телом при равномерном движении, скорость которого равняется половине величины наибольшей конечной скорости, достигаемой при первом равномерно-ускоренном движении» [16, II, с. 248].

Галилей доказывает это утверждение с помощью чертежа, весьма напоминающего чертеж Орема. Но здесь уже нет никаких неясностей относительно того, что представляют собой элементы Срисованной фигуры. Итак, отрезок прямой АВ представляет время, в течение которого тело проходит путь CD; горизонтальные отрезки, заключенные внутри треугольника ЛЕВ изображают скорость равноускоренного движения, соответствующую любому данному моменту времени (в начале движения скорость равна нулю, в конце — своей максимальной величине ЕВ). При этом ясно, что путь, пройденный телом, будет изображаться площадью треугольника AEB (Галилей говорит здесь о «сумме», или «совокупности» линий, заключенных внутри треугольника). Аналогичным образом прямоугольник AGFB представляет собой путь, пройденный тем же телом в равномерном движении со средней скоростью FB = ½∙EB. Желаемое равенство времен следует из равенства треугольников IGA и IEF. Равенство треугольников означает равенство путей: «Отсюда следует, что два тела пройдут равные расстояния в одно и то же время, если одно, выйдя из состояния покоя, будет двигаться равномерно-ускоренно, а другое просто равномерно со скоростью, равною половине максимальной скорости, достигнутой при ускоренном движении, что и требовалось доказать» [16, II, с. 249].