Научная революция XVII века — страница 57 из 78

природы. Впрочем, со смертью Вильгельма II в 1650 г. и с приходом к власти противников дома Оранских, партии крупной буржуазии, возможность дипломатической карьеры для Гюйгенса сильно уменьшилась. Как бы то ни было, Христиан возвращается в дом своих родителей в Гаагу, где проводит все последующие 16 лет (1650—1666), за исключением трех поездок в Лондон и Париж. Для его творчества эти годы оказались наиболее плодотворными.

Общеизвестно, что большое влияние на молодого Гюйгенса оказали философия и математика Декарта. Со слов отца, который преклонялся перед Декартом, Христиан впервые узнал о представлениях великого француза, а впоследствии он внимательно проштудировал его опубликованные труды. «Когда я читал „Начала" в первый раз, мне казалось, что все идет наилучшим в мире образом, и когда встречались затруднения, я обвинял себя в том, что плохо понимаю его некоторые мысли. Мне было только 15—16 лет», — писал он спустя много лет.

Декарт, находясь в постоянном общении с Константином Гюйгенсом и Мерсенном, был прекрасно осведомлен о талантах молодого Гюйгенса и пророчил ему блестящее будущее. Начало научной деятельности Гюйгенса совпало со смертью Декарта — стремясь избежать волнений, вызванных все усиливавшейся активностью противников картезианства в Голландии, Декарт принял предложение королевы Христины и переехал в Швецию, однако суровый климат Стокгольма оказался губительным для него, и вскоре после приезда в Швецию 11 февраля 1650 г. он умер от воспаления легких. Гюйгенс откликнулся на его смерть взволнованными стихами:

Душа, которая в столь мудрости великой

Являла разуму сокрытое от глаз,

Создав миров картины разноликих,

Ушла, покинув мир земной и нас.

Декарт... Природою он первый был оплакан,

В своем отчаяньи склонившейся пред ним.

В последний час угас священный факел,

Но ярче вспыхнул свет идей, рожденных им [14, с. 48].

Многое восприняв от Декарта, Гюйгенс в главных своих методах оставался верен античным традициям. Недаром так часто историки науки подчеркивают его связь с Архимедом, труды которого он увлеченно изучал и логике которого стремился следовать. Мерсенн был, по-видимому, первым, кто соединил эти два имени, когда в начале 1647 г. написал Гюйгенсу: «Я молю Бога, мсье, хранить Вас весь этот год в превосходном здравии, а также чтобы Вы стали Аполлонием и Архимедом наших дней или даже грядущего века» [16, с. 34].

Первые работы Гюйгенса продолжали исследования Архимеда. Имеются в виду его работы «О квадратуре круга» и работы по гидростатике, которые в 1650 г. были сведены в рукопись под названием «О плавающих телах». В ней Гюйгенс основывается на утверждении, что механическая система находится в равновесии, если центр тяжести занимает наинизшее из всех возможных положений. В этой работе закон Архимеда не постулируется, а выводится из приведенного выше утверждения, а также доказывается, что плавающее тело находится в равновесии, если расстояние между центром тяжести всего тела и центром тяжести части, погруженной в воду, минимально. Затем Гюйгенс определяет условия плавания тел вращения в вертикальном положении, а также центр тяжести различных фигур — косо срезанных параболоидов вращения, конусов и цилиндров.

После гидростатики Гюйгенс продолжает свои исследования по механике и в 1652 г. обращается к теории удара. Начало этим работам было положено в результате размышлений над теорией удара Декарта. Если раньше ему казалось, что непонятность некоторых мест у Декарта обусловливается его собственным незнанием, то теперь он подходил к этому критически, и естественно, что декартовы правила соударения его не удовлетворили, поскольку они не согласовывались с опытом. Результаты исследований были представлены в рукописном трактате 1656 г., называвшемся «О движении тел под действием удара», который при жизни Гюйгенса не был опубликован и появился лишь в 1703 г. в сборнике его посмертных трудов. Тем не менее его теория удара стала хорошо известна при его жизни, так как в 1668 г. наиболее важные теоремы он представил Королевскому обществу, а в следующем году опубликовал их без доказательства в «Journal des Scavans». Мерой движения у Декарта была характеристика, пропорциональная величине тела и абсолютной величине его скорости. Выражаясь современным языком, можно сказать, что количество движения понималось им как m|v|. Гюйгенс в противоположность Декарту утверждал, что понимаемое в таком смысле количество движения не сохраняется. Об этом он ясно пишет в Предложении VI: «Когда два тела соударяются, то не всегда сохраняется количество движения, бывшее в обоих до удара, оно может уменьшиться или увеличиться» [15, с. 223].

Но если количество движения понимать как mv(→),

 то имеет место закон сохранения, который Гюйгенс позднее формулирует следующим образом: «Количество движения, которое имеют два тела, может увеличиваться или уменьшаться при столкновении; но его величина остается постоянной в ту же сторону [в том же направлении], если мы вычтем количество движения обрат-го направления» [15, с. 366]. Затем этот принцип получает у него другую, ныне общеизвестную формулировку: «Кроме того, я заметил удивительный закон природы, который я могу доказать для сферических тел и который, по-видимому, справедлив и для всех других тел, твердых и мягких, при прямом и при косом ударе: общий центр тяжести двух или трех или скольких угодно тел продолжает двигаться равномерно в ту же сторону по прямой линии как до, так и после удара» [15, с. 366].

В рукописи первая формулировка дается в расплывчатой форме Предложения VI, а вторая и вовсе отсутствует; по-видимому, Гюйгенс не решался провозгласить векторную величину mv(→) истинной мерой количества движения и ограничился, если можно так сказать, полумерой. Поэтому его изложение проблемы удара по сравнению с современным вывернуто наизнанку, хотя, наверно, такой путь более оправдан интуитивно, т. е. он сначала доказывает специальный случай столкновения (Предложение VIII), затем распространяет его с помощью принципа относительности на общий случай и лишь потом, как следствие этого общего закона удара, получает некоторые законы сохранения. Сегодня мы поступаем в точности наоборот: а именно, законы удара выводятся из аксиоматических законов сохранения.

Трактат Гюйгенса «О движении тел под действием удара» состоит из пяти гипотез, тринадцати предложений и двух лемм. Гипотеза I представляет собой закон инерции: «Тело, приведенное в движение, при отсутствии противодействия продолжает свое движение неизменно с той же скоростью и по прямой линии».

Гипотеза II говорит о том, что мы имеем дело с абсолютно упругим ударом: «Если два одинаковых тела, движущихся с одинаковой скоростью навстречу друг другу, сталкиваются прямым ударом, то каждое из них отскакивает назад с той же скоростью, с какой ударилось».

Гипотеза III гласит: «Движение тел, а также их одинаковые или разные скорости надо рассматривать как относительные по отношению к другим телам, которые мы считаем покоящимися, не учитывая того, что как те, так и другие тела могут участвовать в другом, общем движении. Поэтому два тела, соударяясь, даже в случае, если оба вместе участвуют еще в другом равномерном движении, для лица, также участвующего в общем движении, действуют друг на друга так, как будто бы этого общего движения не существовало» [15, с. 213—214].

Это утверждение Гюйгенса является первой явной формулировкой принципа относительности, который в современной физике называют принципом Галилея. Оно означает, в частности, что если два тела А и В имеют до соударения скорости vA и vB, а после соударения uA и uB, то те же самые тела со скоростями uA + v и uB + v до соударения, после него приобретут скорости uA + v и uB + v соответственно. Аксиома, выраженная гипотезой III,— центральная в трактате, она отражает тот факт, что результаты анализа движения в некоторой системе отсчета не зависят от того, движется ли эта система или нет.

В Предложении VIII рассматривается случай, когда тела, движущиеся навстречу друг другу, имеют массы, обратно пропорциональные их скоростям. Гюйгенс говорит, что тогда, если mA: mB= vB : vA, тела после соударения просто оттолкнутся друг от друга с первоначальными скоростями, т. е. uА= -vА и uB= -vB. Чтобы доказать это утверждение, Гюйгенс пользуется еще двумя гипотезами.

«Гипотеза IV: Если большее тело соударяется с меньшим, находящимся в покое, то оно сообщает последнему некоторое движение и, следовательно, теряет несколько в своем движении». Из этой гипотезы следует опровержение четвертого правила удара Декарта, вызывавшего наибольшие возражения: «Любое большое тело приводится в движение любым малым телом при любой скорости малого тела».

«Гипотеза V: Если при соударении двух твердых движущихся навстречу друг другу тел обнаруживается, что одно из них сохранило все движение, то и другое не выигрывает и не теряет ничего в движении» [15, с. 219].

Строго говоря, Гюйгенс нигде в своих рассуждениях не пользуется понятием массы, вместо этого он говорит «величина тела». Правда, позднее он отождествлял величину тела с его весом: «При всем этом (т. е. при всех этих правилах) я рассматриваю тела из одного и того же вещества или же принимаю, что величина тел определяется их весом» [15, с. 367]. Поскольку вес пропорционален массе, все рассуждения Гюйгенса оказываются правильными и допускают модернизованную интерпретацию, использующую это понятие.

В процессе доказательства Гюйгенс пользуется еще одним важным соображением, а именно что центр тяжести механической системы может в своем движении подняться лишь на ту высоту, на которой он первоначально находился. После того как Предложение VIII доказано, он обобщает его для любого упругого столкновения в Предложении IX, которое дает правило вычисления скоростей тел после соударения (рассматривается прямой удар). Его результат эквивалентен хорошо известным сегодня формулам