Ньютону все это казалось неверным. Его приверженность атомистической доктрине не давала ему возможности стать ни на точку зрения Декарта, ни на точку зрения Гука. «Чем более одинаково частицы света (globuli) возбуждают оптический нерв, тем более тело кажется окрашенным в красный, желтый, синий и т. д. цвет, а чем более разнообразно они на него действуют, тем более тела кажутся белыми, черными и серыми» [2, с. 159],— писал он в добавлении к «Вопросам».
Ньютон вначале подошел к проблеме чисто теоретически, предположив, что свет является потоком частиц, а белый цвет является составным. Тогда же он связал цвет со скоростью частиц. После того как выкристаллизовалась первоначальная идея, можно было приступать к экспериментам. Направление их было определено работами его предшественников — это должны были быть эксперименты с призмой. Позднее Ньютон так вспоминал об этом: «В начале 1666 г. (в то время, когда я занялся шлифованием оптических стекол иной формы, чем сферическая) я приобрел для себя треугольную стеклянную призму, чтобы с ее помощью попробовать получить знаменитые явления цветов» [2, с. 156].
Нам достоверно неизвестно, ставил ли он опыты с разложением света до своего окончательного возвращения в университет. Во всяком случае, подготовительная работа была проведена.
4
Весной 1667 г. Ньютон возвратился в Кембридж. Можно с уверенностью сказать, что почти два года, проведенные им вне стен университета, пошли ему на пользу. За это время он превратился из критически настроенного дилетанта в настоящего ученого, чьи результаты объективно не вызывали сомнений в его гениальности. Но именно — объективно, потому что с его результатами еще никто не был знаком ни в математике, ни в физике. Впрочем, мало-помалу он становился известным, об этом говорит тот факт, что в октябре 1669 г. Ньютон сменил Барроу на посту профессора люкасовской кафедры. Но в период между 1667 и 1669 гг. еще многое Ньютону предстояло сделать в науке и еще многое в его жизни должно было измениться.
Прежде всего перед ним снова встала проблема, связанная с продолжением работы в университете: статус стипендиата колледжа был всего лишь необходимым условием для дальнейшей университетской карьеры, но отнюдь не достаточным. Чтобы обеспечить себе возможность дальнейшей работы в университете, Ньютон должен был стать членом колледжа. Важность этого шага для его дальнейшей жизни может быть сравнима только с избранием его стипендиатом три года назад. Но сходство ситуаций этим не ограничивается — по-прежнему у Ньютона не было никаких видимых шансов быть избранным в члены колледжа: он почти никому не был известен как ученый, к тому же последние три года выборы не проводились, и потому набралось много кандидатов на всего девять вакансий. Как пишет Уэстфолл, «фаланга вестминстерских ученых имела, как обычно, все преимущества. Было хорошо известно, что их политическое влияние постоянно возрастает, в результате чего они, пользуясь доступом ко двору, запаслись грамотами от короля, требовавшего их избрания. Для остальных все зависело от решения магистра и восьми старших членов (senior fellows), и слухи о связях распространялись повсюду. Кандидаты должны были просидеть в часовне четыре дня подряд, подвергаясь экзамену viva voce со стороны восьми старших членов,— это было вымирающим олицетворением программы, которую Ньютон систематически игнорировал почти четыре года. Как мог бывший сабсайзер, каковы бы ни были его достоинства, надеяться пройти в таких обстоятельствах?» [2, с. 177].
Тем не менее невозможное снова случилось, и когда 2 октября 1667 г. зазвонил колокол, возвещая о том, что выборы состоялись, Ньютон стал младшим членом (minor fellow) колледжа. Спустя полгода, в марте 1668 г., он был сделан старшим членом (senior fellow), а еще через четыре месяца Ньютон почти автоматически получил степень магистра искусств. К этому моменту имя Ньютона начинает приобретать известность в университетских кругах, в первую очередь благодаря его математическим достижениям.
Существенные результаты в математике Ньютон получил уже в первые годы своего пребывания в университете. Осенью 1664 г. он занимался проблемой проведения касательных и нормалей к кривым, ею он заинтересовался, как мы помним, изучая работы Декарта и Схоутена. Решение этой проблемы было чрезвычайно важно вследствие ее непосредственной связи с понятиями дифференциального исчисления (напомним, что производная функция в данной точке есть тангенс угла наклона касательной к кривой, изображающей функцию, в этой точке)[19].
У Декарта нахождение касательной к кривой заменялось построением поднормали для данной точки. На рисунке (слева) NM — касательная, проведенная к кривой aMb в точке М, МО — нормаль и KO — поднормаль. Согласно Декарту, окружность, проведенная из точки O (пересечение нормали с осью абсцисс) радиусом МО, будет иметь в М общую касательную с данной кривой. Поэтому задача нахождения поднормали KO, которую можно рассматривать как абсциссу точки М, сводится к построению окружности, имеющей с данной кривой одну общую точку М. В общем случае окружность пересечет кривую по меньшей мере в двух точках. Алгебраически это означает, что совместное решение уравнений окружности и данной кривой имеет два различных корня. Если же окружность касается кривой, то решением служит один двойной корень, которому соответствует нормаль KO и отрезок КМ (т. е. абсцисса и ордината точки М). Декарт находил этот двойной корень с помощью открытого им метода неопределенных коэффициентов.
Для Ньютона в подходе Декарта наиболее важной была процедура перехода от двух точек пересечения к одной, и уже весной 1665 г. он определяет центр кривизны кривой как точку пересечения двух бесконечно близких нормалей, а 20 мая 1665 г. он пишет статью о максимумах и минимумах, где прямо переходит к методам исчисления бесконечно малых. В задаче о нахождении поднормали он поступает следующим образом: наряду с точкой e (которая, как и у Декарта, есть общая точка окружности и кривой) он берет другую точку пересечения f, бесконечна близкую к e; тогда c будет бесконечно близко к b. Расстояние cb он обозначает как o малое (такое обозначение он ввел несколько раньше). Затем, полагая, что de = df, и воспользовавшись теоремой Пифагора, Ньютон получает
vv + yy = ed2 = ef2 = zz + vv + 2vo + oo,
где ab = x; db = v; dc = v—o; eb = y; bc = o; cf = z. Из этого соотношения легко получить известную формулу дифференциального исчисления для поднормали: v = ydy/dx, ибо, как легко видеть, dx = o; z = y + dy. Но здесь Ньютон эту формулу не выписывает, он получает ее несколько позднее в работе под названием «Общая теорема о касательных к кривым линиям, когда x┴y».
Наряду с исследованиями, инспирированными «Геометрией» Декарта, Ньютон много размышляет над результатами Валлиса, содержащимися в его книге «Арифметика бесконечных». Самым важным достижением Ньютона в этом направлении было открытие разложения бинома в степенной ряд; помимо этого, им были получены разложения для арксинуса
arcsin х = х/2 + х3/12 + 3х5/80 + 5х7/224 + ...
и логарифма
ln(1+х) = x — x2/2 + x3/3 — х4/4 +...
Все это было им получено к зиме 1664/65 г. К середине 1665 г. результаты, содержащиеся в книге Валлиса, относительно квадратуры параболических кривых, а также в работе ван Хойрата о спрямлении кривых, дают новый импульс исследованиям Ньютона, и он переходит к рассмотрению проблем интегрального исчисления. Здесь им впервые устанавливается взаимно обратная связь между дифференцированием и интегрированием, а затем он начинает систематическую разработку метода флюксий. Под флюксиями Ньютон понимал производные координат x, y, z по времени, т. е. dx/dt, dy/dt, dz/dt. В первых своих работах 1665—1666 гг. он называл их сначала «движениями», а затем «скоростями».
Кинематический подход Ньютона к понятиям математического анализа чрезвычайно характерен для английской школы натуральной философии. В качестве примера можно сослаться на случай с У. Томсоном (лордом Кельвином), произошедшим два с половиной столетия спустя. Ф. Клейн рассказывает, что, «войдя раз в аудиторию, Томсон обратился внезапно к слушателям с вопросом: что такое производная? В ответ он получил все мыслимые строго логические определения. Все они были отвергнуты: «Ах, бросьте вы этого Тодгентера (представитель чистой математики в Кембридже), производная есть скорость!» [5, с. 280].
Свои результаты по созданию метода флюксий Ньютон подытожил в трех работах, относящихся к ноябрю 1665 г., а также к маю и октябрю 1666 г., в них даются наиболее важные правила дифференцирования, разложения в степенные ряды и рассматриваются соответствующие задачи.
Первые два года после возвращения Ньютона в Кембридж были прямым контрастом спокойной жизни в деревенской глуши, сопряженной с глубокими творческими озарениями. В Кембридже нервная обстановка, связанная с борьбой за академические привилегии, выбила его из колеи обычной размеренной жизни, но нельзя сказать, что результаты его усилий не доставили Ньютону удовольствия. Пожалуй, впервые мы видим Ньютона, занимающегося устройством своего быта — он обставляет свою комнату в Тринити, шьет себе новое платье и, наконец, впервые позволяет себе поездку в Лондон. В столице он не стремится (или не решается) познакомиться с членами Королевского общества, например с Бойлем и Гуком, чьи труды он хорошо знал, но само Общество уже год назад стало предметом его пристального внимания — тогда же он купил только что вышедшую «Историю Королевского общества» Спрэта и начал читать «Philosophical Transactions».
В это время его научные занятия не позволяют выделить какого-либо доминирующего направления: он увлеченно занимается оптикой, строит первую модель отражательного телескопа, проводит долгие часы в химической лаборатории (алхимия — его новое увлечение!), по-прежнему много размышляет о математических проблемах. Но, говоря о математике, интересно подчеркнуть связь между его знаменитым трактатом «Об анализе с помощью уравнений с бесконечным числом членов» и историей его назначения профессором люкасовской кафедры. Собственно, трактат этот знаменит потому, что до последнего времени более ранние работы Ньютона были неизвестны, а результаты именно этих работ составляют основное содержание трактата. Его появление было стимулировано появлением книги Николаса Меркатора «Логарифмотехния», где дано разложение в степенной ряд логарифма (ряд для ln(1+x) получался в результате простого деления единицы на 1 + x и последующего почленного интегрирования), таким образом, давалось ясное указание на то, что использование рядов является мощным методом вычислений. Ньютон сразу понял, что Меркатор стоит в начале того самого пути, на котором стоял он сам четыре года назад, и он определенно не хотел, чтобы полностью разработанный им метод стал считаться заслугой человека, который сообщил лишь один частный пример этого метода. Поэтому он в спешке принялся за составление трактата «Об анализе».