У Ц иолковского была большая семья – семь человек детей. Жизнь была трудной, иногда попросту голодной, и немало было в ней горя. А завещал он нам великую радость: «Я хочу привести вас в восторг от созерцания вселенной, от ожидающей всех судьбы, от чудесной истории прошедшего и будущего…»
14 апреляДисциплина гения
14 апреля 1629 года родился Христиан Гюйгенс, голландский физик, математик и астроном (ум. 1695).
Богатство, знатное происхождение, таланты – всем этим обладал Христиан Гюйгенс от рождения. Перед ним были открыты все двери. А он выбрал науку и был предан только ей. Он никогда не терял времени даром. Если занимался математикой, то в качестве отдыха переключался на физику. А из редких развлечений с друзьями рождалась книга «О расчетах в азартной игре», с которой началась теория вероятностей. «То, что для обыкновенного человека было утомительным занятием, для Гюйгенса было развлечением», – писал его современник. Увлекшись астрономией, он усовершенствовал телескоп и открыл кольца Сатурна и его спутник Титан, обнаружил полярные шапки на Марсе, а также сделал много других открытий. При изучении законов равноускоренного движения тел ему требовалось точно измерять время – и Гюйгенс изобрел маятниковые часы, попутно разработав математическую теорию маятников (его предшественник Галилей при изучении законов движения отмерял время по ударам собственного пульса). Еще один важный вклад Гюйгенса в физику – его волновая теория света, с помощью которой он вывел законы отражения и преломления, а также объяснил такое загадочное явление, как расщепление светового луча на две части в некоторых кристаллах.
Ньютон, великий современник Гюйгенса, считал свет состоящим из мельчайших частиц. В XVII веке победил авторитет Ньютона. Но через 100 лет волновая теория Гюйгенса возродилась в работах Юнга и Френеля. А ХХ век примирил оба эти взгляда на свет, прекратив этот спор.
15 апреляЭкзопланеты
15 апреля 1999 года впервые обнаружена другая планетная система, у звезды Эпсилон созвездия Андромеды.
Поиск планет около других звезд (их называют экзопланетами) можно сравнить с попыткой разглядеть свет свечи, горящей рядом с маяком, с расстояния в тысячу километров. И все же экзопланеты и целые планетные системы научились обнаруживать. Их находят по гравитационному влиянию на движение звезды, затмениям блеска звезды при прохождении планеты на фоне ее диска, по некоторым нюансам спектра звезды. К 1 июля 2020 года достоверно подтверждено существование 4281 экзопланет, а число надежных кандидатов еще больше. По оценкам, общее число экзопланет в нашей Галактике не менее 100 миллиардов, от 5 до 20 % из них являются «землеподобными» и некоторые находятся в «обитаемой зоне» своих звезд. Итак, планеты – весьма распространенное явление во Вселенной. Целая «флотилия» космических телескопов занималась и продолжает заниматься их поиском: с 2006 года – COROT, с 2009 – «Кеплер», с 2013 – Gaia, с 2018 – TESS. Даже когда космический телескоп завершает свою миссию, переданные им данные продолжают обрабатываться годами. Будут детально обследованы более ста тысяч звезд.
Титул «двойника Земли» постоянно переходит от одного объекта к другому. В апреле 2020 года наиболее близкой к Земле по температуре и размеру была признана планета Kepler-1649c, удаленная от нас на 300 световых лет. Экзопланета находится так близко к своей звезде, что год на ней длится всего 19,5 земных суток. Возможно, на этой планете существуют океаны. Несомненно, нас ждут новые интересные открытия.
16 апреляПолезная пустота
16 апреля 1932 года на Ленинградском радиозаводе изготовлены первые отечественные телевизоры.
Кинескоп старого телевизора – прибор с высоким вакуумом. Давление воздуха в нем примерно одна миллионная миллиметра ртутного столба. Пучок электронов рисует изображение на экране, и чтобы электроны точно попадали в нужные места, их не должны сбивать с пути хаотически движущиеся молекулы. Но такие телевизоры – уже прошлый век: электронно-лучевые трубки уступили место жидкокристаллическим экранам. И тем не менее потребность в вакуумных технологиях не только не уменьшается, но непрерывно растет. Пустота (вакуум) – вещь полезная. К примеру, чем меньше концентрация молекул в газе, тем хуже он проводит тепло. Бытовой термос – это две вложенные колбы, между которыми создается вакуум, а потому он хорошо сохраняет тепло. Другой пример: чем меньше кислорода, тем медленнее происходит окисление и продукты медленнее портятся. При создании вакуумной упаковки достаточно низкого вакуума с давлением всего в сто раз меньше атмосферного, и срок хранения продуктов увеличивается в несколько раз.
Близкий родственник кинескопа – электронный микроскоп. Пучок электронов в вакуумной трубке «ощупывает» рельеф поверхности, позволяя разглядеть отдельные атомы. Высокий вакуум требуется и в ускорителях, где до огромных скоростей разгоняют элементарные частицы. Напыление тонких пленок – еще одна область, где без высокого вакуума не обойтись. Так получают покрытие компакт-дисков. А в некоторых областях высокотехнологичного производства используют не просто высокий, а сверхвысокий вакуум.
17 апреляВысокотемпературная сверхпроводимость
17 апреля 1986 года в редакцию немецкого «Физического журнала» поступило сообщение об открытии сверхпроводимости при температуре –238оС.
Открытие в 1911 году сверхпроводимости (см. 28 апреля) разбудило смелые мечты: отсутствие электрического сопротивления и связанных с ним потерь энергии могло бы дать колоссальный экономический эффект! Одна беда: сверхпроводимость наблюдалась лишь при очень низких температурах, что требовало погружения установки в жидкий гелий, а это очень дорого. Если бы удалось создать вещество, сверхпроводящее при температуре жидкого азота (–196 °C), это сделало бы сверхпроводимость почти бесплатной, ведь жидкий азот в сотни раз дешевле. Но все усилия получить высокотемпературную сверхпроводимость оставались тщетными. За 75 лет критическую температуру удалось поднять от –270 до –250 °C. Задача казалась неразрешимой. Вам понятно теперь, почему статья немца Георга Беднорца и швейцарца Алекса Мюллера вызвала такое возбуждение среди физиков, хотя к азотной температуре они еще не подобрались. Революционное значение открытия было настолько очевидным, что уже в следующем, 1987 году, его авторы получили Нобелевскую премию.
К удивлению теоретиков, сверхпроводящие свойства при высокой температуре проявили не металлы, а керамика. После публикаций Беднорца и Мюллера ученых охватила настоящая лихорадка: все хотели превзойти их результаты. Исследователи не покидали рабочих мест ни днем, ни ночью, спали тут же – на раскладушках. И вскоре «азотный рубеж» был взят почти одновременно в США, Японии, Китае и России.
18 апреляНачало космонавтики
18 апреля 1930 года был впервые испытан реактивный двигатель Цандера (1887–1933).
Математик и инженер Фридрих Артурович Цандер с 20-ти лет размышлял о строительстве ракет. Голодал, потому что государство еще не дозрело до идеи покорения космоса. Мечты начали воплощаться в начале 1930-х после встречи Цандера и Сергея Королева. Вместе они организовали Группу изучения реактивного движения (ГИРД). Первый ракетный двигатель Цандера готовился к испытаниям, а Цандер уже рассчитывал более мощный двигатель. Один из инженеров группы вспоминал: «Все гирдовцы работали буквально сутками. Все члены бригады были моложе Цандера и значительно легче переносили столь большую перегрузку. Видя, что Фридрих Артурович очень устал, ему поставили ультиматум: если он сейчас же не уйдет домой, все прекратят работать, а если уйдет и выспится, то все будет подготовлено к утру, и с его приходом начнутся испытания. Сколько ни спорил, ни возражал Цандер, бригада была неумолима. Вскоре незаметно для всех Цандер исчез, а бригада еще интенсивнее начала работать. Прошло пять-шесть часов, и один из механиков не без торжественности громко воскликнул: «Все готово, поднимай давление, даешь Марс!» И вдруг… стоявший в глубине подвала топчан с грохотом опрокинулся, и оттуда выскочил Цандер. Он кинулся всех обнимать, а затем, смеясь, сказал, что он примостился за топчаном и оттуда следил за работами, а так как ему скучно было сидеть, то он успел закончить ряд расчетов и прекрасно отдохнул».
Цандер умер от тифа в Кисловодском санатории, куда его с большим трудом отправил Королев.
19 апреля«Салюты» осваивают околоземное пространство
19 апреля 1971 года состоялся успешный запуск первой в мире долговременной орбитальной советской станции «Салют».
Орбитальные станции – новый этап освоения космоса, связанный с постоянным пребыванием там человека. Начало этого этапа далось нам нелегко. 23 апреля 71-го года на станцию отправился первый экипаж космонавтов. После касания корабля со станцией выяснилось, что вышел из строя стыковочный узел и переход внутрь станции невозможен. Отделиться от станции и вернуться на Землю космонавты смогли только через двое суток. 6 июня к станции отправился очередной «Союз». На этот раз стыковка прошла удачно, на станции началась работа. При возвращении на Землю 30 июня космический экипаж трагически погиб из-за нарушения герметизации кабины космического корабля. Новые экспедиции на «Салют-1» уже не отправлялись. Спустя пять с лишним месяцев после запуска станция была затоплена в океане.
При запуске второго «Салюта» произошла авария ракеты-носителя. Не повезло и третьему «Салюту». Из-за неисправности системы ориентации он прожил на орбите лишь несколько дней. Москва официально назвала ту станцию спутником «Космос-557». США ломали голову, что за гигантский спутник массой 20 тонн Советы вывели на орбиту. Но больше уже неудач не было. Хотя не всегда все было безоблачно (см. 6 июня). С 1974 года на орбите успешно работали станции «Салют» и «Мир», что позволило накопить бесценный опыт, ставший опорой для создания Международной космической станции (см. 20 ноября).