Труднее решается задача спуска, то есть входа в земную атмосферу из космического пространства. Здесь существуют три пути решения. Во-первых, можно затормозить ракету еще в космическом пространстве путем включения реактивных двигателей, работающих в направлении снижения скорости. Можно создать для такой цели специальные устройства у основных двигателей, поворачивая их струи на 180°. Такое решение требует запаса дополнительной энергии для торможения. Во-вторых, можно произвести постепенное торможение в весьма высоких слоях атмосферы, отводя теплоту из нагревающейся оболочки летательной машины путем лучеиспускания. Этот способ требует создания жаропрочных материалов для оболочки машины и очень точно регулируемой высоты полета. В-третьих, можно входить в атмосферу на полной скорости, но для защиты иметь на летательной машине внешнюю сгорающую или испаряющуюся оболочку. Очевидно, что все три способа могут сочетаться друг с другом и взаимно дополнять друг друга. Эти вопросы подробно рассмотрены Э. Бургессом в книге «Управляемое ракетное оружие». Во всяком случае, нет сомнения, что и эта задача разрешима.
Необходимые для этого летательные машины должны существенно отличаться от кораблей, предназначенных для настоящего космического полета. Поэтому транспорт для полетов через космическое пространство между двумя наземными пунктами следует рассматривать как особую отрасль техники будущего.
Уже сейчас можно с уверенностью сказать, что быстрое развитие техники и космических полетов вскоре позволит летательным аппаратам достигать Луны и небольших астероидов, вращающихся вокруг Земли. Затем последует освоение этих небесных тел автоматической техникой, созданной человеком, В дальнейшем не исключено проникновение на эти небесные тела и человека. В связи с этим в зарубежной печати все чаще высказываются мнения о том, что такое небесное тело, как Луна, также может быть использовано для военных целей.
В книге Штернфельда «Введение в космонавтику» указано: ввиду того что масса Луны невелика по сравнению с массой земного шара, подъем ракет с Луны в космическое пространство может быть осуществлен сравнительно легко. Если для полета на Луну с Земли требуется, согласно теории К. Э. Циолковского, по меньшей мере четырехступенчатая ракета, то для обратного полета с Луны на Землю достаточно иметь одноступенчатую ракету. Другими словами, для стрельбы с Луны по Земле достаточными оказались бы не только межконтинентальные, но и ракеты меньшего радиуса действия. На основе подобных соображений очень многие иностранные авторы полагают, что Луна является позицией, господствующей над всей территорией земного шара. Отсюда следует, что и она, и астероиды, находящиеся сравнительно недалеко от Земли, также должны быть объектом международного контроля, исключающего их использование реакционными силами капитализма для каких-либо агрессивных целей.
Советское правительство предлагает, чтобы Организация Объединенных Наций приняла решение по важнейшей проблеме нашего времени — запретила использование космического пространства в военных целях и потребовала ликвидации военных баз на чужих территориях. В поддержку этого предложения Советского правительства, несомненно, выступят все те, кто на деле, а не на словах стремится к ослаблению международной напряженности.
Однако, кроме таких далеко идущих проблем, имеется и ряд других, может быть, менее грандиозных, но практически не менее существенных. Можно, например, отметить следующую очень важную задачу.
Развитие современных скоростных самолетов приводит к тому, что сила тяги их двигателей растет быстрее, чем вес самолетов.
Как отмечается в зарубежной военной печати, уже сейчас в ряде случаев достигнуты условия, при которых сила тяги двигателя превосходит вес самолета. В ближайшее время такие условия станут типичными для истребителей, а несколько позднее и для бомбардировщиков, особенно с атомными двигателями. Тогда осуществится подлинная революция в боевой авиации.
Самолеты смогут вертикально взлетать и садиться (рис. 16), подобно вертолетам.
Рис. 16. Схема вертикального взлета и вертикальной посадки безаэродромного самолета.
При этом более легкие самолеты могут взлетать, имея вертикальное положение фюзеляжа еще до старта. Известны, например, опытные образцы самолетов такого типа с турбовинтовыми двигателями.
В журналах «Интеравиа» и «Флайт» в 1955 году были опубликованы некоторые данные о самолетах такого типа (рис. 17).
Рис. 17. Взлет самолета с турбовинтовым двигателем (винт на рисунке не виден вследствие вращения).
Показанный на рисунке самолет представляет собой цельнометаллический моноплан с треугольным в плане крылом. Его вертикальное оперение состоит из двух плоскостей с рулями, расположенных перпендикулярно плоскости крыла. Горизонтальное оперение отсутствует. На концах крыла и вертикального оперения имеются четыре амортизационные стойки шасси с небольшими колесами. Силовая установка самолета состоит из одного турбовинтового двигателя. В носовой части фюзеляжа установлено два соосных трехлопастных воздушных винта. Тяга, развиваемая винтами при взлете, составляет около 8000 кг, что при взлетном весе самолета 6800 кг обеспечивает ему достаточную скорость вертикального подъема.
После отрыва от земли и набора некоторой высоты и скорости летчик переводит самолет в горизонтальный полет. Перед приземлением самолет в воздухе устанавливается в вертикальное положение. После того как самолет «повиснет» в воздухе, летчик, незначительно убрав газ, плавно приземляет машину.
Кроме этого, можно также взлетать вертикально и при горизонтально расположенном фюзеляже, но поворачивая в вертикальное положение реактивные двигатели. Известны иностранные опытные образцы и таких самолетов с турбореактивными двигателями (рис. 18).
Рис. 18. Самолет с поворачивающимся турбореактивным двигателем (при подъеме).
Для самолетов подобного типа не нужны будут аэродромы с огромными взлетно-посадочными полосами (ВПП). При этом боевая авиация получит возможность рассредоточиться и отлично маскироваться. Эти мероприятия, по мнению зарубежных военных специалистов, будут иметь в современных условиях очень большое значение, потому что снизят для боевой авиации опасность гибели на земле от мощных, внезапных и сосредоточенных ударов противника по аэродромам. Такие удары противник будет пытаться наносить, начиная войну, с целью снизить боевые возможности авиации страны, подвергнувшейся нападению.
Безаэродромная сверхскоростная авиация сможет базироваться в отличных естественных укрытиях: в лесах, в горных ущельях и других труднодоступных и удобных для маскировки участках местности.
В этом отношении граница между самолетами, ракетами дальнего действия и зенитными управляемыми снарядами будет постепенно стираться. Этому будет способствовать также и то, что автоматика, например автопилоты, будет все более и более заменять человека на самолете, вплоть до того, чтобы оставить человека на земле и заменить его присутствие на самолете установкой головки, передающей на пост управления все то, что должен был бы видеть летчик, перемещающийся вместе с самолетом.
В иностранной печати неоднократно отмечалось, что при этом выиграет прежде всего человек, получив возможность вести боевую работу в более нормальных условиях, не испытывая тяжелого воздействия больших перегрузок, кислородного голодания и низких температур, а также не подвергаясь тому огромному риску, с которым всегда связано ведение воздушного боя.
С другой стороны, и самолет, освобожденный от необходимости перевозить человека, сразу получит возможность более стремительного маневра, более крутых виражей, более быстрого изменения скорости полета.
Сказанное совершенно не означает, что боевая техника в процессе своего развития оттесняет человека на задний план, умаляет его роль. Попытки некоторых буржуазных военных теоретиков превратить солдата в придаток, в некоторое дополнение к автоматике, применяемой в военной технике, не выдерживают критики. Боевая техника в процессе своего развития не оттесняет человека, а, наоборот, повышает его роль. Рост и усложнение вооружения и техники предъявляют все большие и большие требования к людям, к их морально-боевым качествам.
Роль человека в военном деле и в новых видах техники всегда будет решающей. Вместе с ростом военной техники она непрерывно повышается и усложняется. Однако это вовсе не значит, что человек должен быть соединен, так сказать, механически с машинами, которые им созданы и которыми он управляет. Наоборот, развитие техники вообще и военной техники в особенности приводит в ряде случаев к удалению и отделению человека от машины, избавлению его от рабской зависимости от машины, к созданию условий проявления в полной мере того наиболее ценного, что есть в человеке — творческой, критической мысли и воображения, возможности научно предвидеть и регулировать свою деятельность по управлению техникой.
За последние годы в печати капиталистических стран очень большое значение придается приборам весьма высокой чувствительности, оптическим системам с электронно-оптическими преобразователями, позволяющим видеть в безлунную облачную ночь за счет освещения невидимыми, инфракрасными, лучами или даже за счет слабого света звезд и самопроизвольного свечения верхних слоев атмосферы. Уделяется также большое внимание радиометрической аппаратуре, предназначенной для обнаружения радиоактивного заражения.
Таким образом, развитие военной техники позволяет применять рекордно высокие концентрации энергии в виде водородных взрывов с тротиловыми эквивалентами в десятки миллионов тонн или двигателей ракет дальнего действия с очень большими мощностями (Э. Бургесс. «Управляемое реактивное оружие»). В иностранной печати указывается, что в то же время эта техника использует наиболее тонкие методы наблюдения и измерения, способные выделить и показать отдельно действие каждого атома, каждого электрона и фотона. Такое развитие, какое прошла военная техника за последние десять лет, не имеет примеров в истории и должно неизбежно произвести огромные изменения во всем военном деле, которые трудно переоценит