В 1924 году Эдвин Хаббл доказал, что M31 находится далеко за пределами Млечного Пути, а помогла ему в этом блестящая работа Генриетты Ливитт, которая по роду деятельности была живым «компьютером» и занималась однообразными задачами по измерению и каталогизации яркости звезд. В те годы астрономы были заняты поисками «стандартной свечи» разновидности звезд, собственную яркость которых можно было бы вывести, опираясь на результаты других наблюдений. Тогда, сравнив их с видимой яркостью и приняв во внимание характер уменьшения яркости звезд с увеличением расстояния, можно бы вычислить расстояние до звезды. Ливитт вела наблюдение за цефеидами переменными звездами, светоотдача которых меняется согласно периодическому циклу и в 1908 году нашла взаимосвязь между светоотдачей цефеиды и периодом соответствующего цикла. Это означало, что собственную яркость такой звезды можно было рассчитать, исходя из наблюдений, а значит, использовать в качестве стандартной свечи. В 1924 году Хаббл обнаружил цефеиды в M31 и вычислил, что расстояние до этой галактики составляет один миллион световых лет. По современным оценкам оно равно 2,5 миллионам.
Большинство галактик находятся гораздо дальше; расстояние до них настолько велико, что мы не в состоянии рассмотреть отдельные звезды не говоря уже о том, чтобы различить среди них цефеиды. Тем не менее, Хаббл сумел преодолеть и это препятствие. Весто Слайфер и Милтон Хьюмасон обнаружили, что излучение многих галактик смещено в красную сторону спектра. Наиболее вероятным объяснением был эффект Доплера, при котором частота волны меняется из-за движения ее источника. Лучше всего мы знакомы с ним на примере звуковых волн: тон полицейской сирены понижается, когда машина проезжает мимо то есть движение в нашу сторону сменяется движением от нас. Из эффекта Доплера следует, что соответствующие галактики должны удаляться от нас с приличной скоростью. Хаббл построил график зависимости между величиной красного смещения и оценкой расстояний до сорока шести галактик, в которых были замечены цефеиды. Результат приблизительно соответствовал прямой линии это указывало на то, что скорость удаления (вычисленная по красному смещению) пропорциональна расстоянию. В 1929 году он выразил это соотношение в виде формулы, которая теперь называется законом Хаббла. Коэффициент пропорциональности, или постоянная Хаббла, по современным оценкам составляет около 21 км/с на миллион световых лет. Первоначальная оценка, предложенная Хабблом, была в семь раз больше.
Как теперь известно, та же идея посетила шведского астронома Кнута Лундмарка в 1924 году, за пять лет до Хаббла. Чтобы определить расстояние до галактик, он использовал их видимые размеры, а его оценка постоянной «Хаббла» отличается от современной не более, чем на 1 %, что значительно превосходит результат самого Хаббла. Тем не менее, его работа прошла незамеченной, так как его методы не были сверены с результатами независимых измерений.
Следствием этих открытий, связавших размер Вселенной с ее динамическим поведением, стал удивительный вывод. Если все галактики удаляются от нас, значит, либо Земля находится рядом с центром некой расширяющейся области, либо Вселенная в целом становится больше.
Астрономы уже знали о возможном расширении Вселенной. Это следовало из эйнштейновых уравнений поля, составляющих основу общей теории относительности. В 1924 году Александр Фридман нашел три типа решений, соответствующих трем вариантам кривизны пространства: положительной, нулевой и отрицательной. Математикам из области неевклидовой геометрии такие пространства уже были известны они называются соответственно эллиптическим, евклидовым и гиперболическим (наподобие Вселенной Эшера). Эллиптическое пространство конечно это гиперсфера, которая похожа на поверхность обычной сферы, но охватывает три измерения. Остальные два пространства имеют бесконечную протяженность. (Вселенная Эшера похожа на Круглый Мир снаружи она выглядит конечной, но при этом бесконечна внутри, с точки зрения собственной метрики. Именно так ей удается вместить в себя бесконечное число ангелов или демонов одного и того же размера.) Уравнения поля описывают целый спектр форм, которые может принять Вселенная, но не определяют эту форму в точности.
Из уравнений поля также следовало, что форма Вселенной может меняться со временем. В 1927 году Жорж Леметр нашел решение, которое описывало расширяющуюся Вселенную, и оценил скорость ее расширения. Его статья «Однородная Вселенная постоянной массы и рост радиуса по расчетам радиальной скорости внегалактических туманностей» (1931) не пользовалась популярностью, так как была опубликована в малоизвестном бельгийском журнале, но в конечном счете стала научной классикой.
Хотя решение Леметра противоречило доминирующим взглядам на космологию, популярный астроном (и популист) сэр Артур Эддингтон верил в то, что теория Леметра решала многие из ключевых проблем космологии. В 1930 он пригласил Леметра в Лондон на встречу, посвященную вопросам физики и духовности. К тому моменту Леметр уже понял, что если обратить расширение Вселенной вспять, то где-то в отдаленном прошлом она сожмется в одну точку[86]. Он назвал эту исходную сингулярность первобытным атомом и опубликовал свою идею в ведущем научном журнале «Nature». За этим последовали прения колоссальных масштабов. Леметр, пожалуй, только усугубил дело, сославшись на свою идею как на «Космическое яйцо, взорвавшееся в момент сотворения мира».
Намного позже Фред Хойл, который на тот момент был одним из главных сторонников теории стационарной Вселенной то есть полагал, что Вселенная находится в равновесии и, если не считать локальных флуктуаций, была такой всегда презрительно отозвался о теории Леметра как о «Большом взрыве». Название прижилось. Как и сама теория, к неудовольствию Хойла. Хойл разработал теорию стационарного состояния в 1948 году при поддержке Томаса Голда, Германа Бонди и других ученых. В этой теории уменьшение плотности вещества по мере расширения Вселенной уравновешивалось медленным, но непрерывным частица за частицей созиданием новой материи в межзвездном пространстве. Необходимая скорость образования материи была небольшой примерно по одному атому водорода на каждый кубический метр за один миллиард лет.
К несчастью для Хойла, количество фактов, косвенно опровергавших теорию стационарной Вселенной, и при этом подтверждавших Большой взрыв, продолжало расти. Решающую роль сыграло открытие в 1965 году фонового космического излучения хаотичного шипения в радиодиапазоне, которое по современным представлениям возникло в тот момент, когда Вселенная, вскоре после Большого взрыва, впервые стала прозрачной для радиоволн. По словам Хокинга, это открытие стало «последним гвоздем, вбитым в крышку гроба стационарной теории».
Эйнштейн в частной беседе не выразил восторга от расширяющейся Вселенной Леметра. Он согласился с математическими выкладками, но не признал физическую реальность. Однако после того, как Хаббл опубликовал свои результаты два года спустя, Эйнштейн сразу же поменял свое мнение и оказал Леметру мощную общественную поддержку. В 1935 году Говард Робертсон и Артур Уокер доказали, что любая однородная и изотропная Вселенная то есть одинаковая в любой точке и в любом направлении соответствует определенному семейству решений эйнштейновых уравнений поля. Такие Вселенные могут быть статичными, а могут расширяться или сжиматься; их топология может быть как простой, так и сложной. Соответствующее семейство решений называется метрикой Фридмана Леметра Робертсона Уокера, или «стандартной космологической моделью», если предыдущий вариант слишком сложен в произношении. В настоящее время эта модель преобладает в общепринятой космологической картине.
Теперь рассказий взял верх и завел немало космологов в дебри научной мифологии. Верное утверждение о «существовании решений эйнштейновых уравнений поля, соответствующих классическим неевклидовым геометриям» таинственным образом превратилось в ложное утверждение о том, что «они составляют единственно возможные решения с постоянной кривизной». Возможно, причина этой ошибки кроется в том, что математики не уделяли должного внимания астрономии, а астрономы не уделяли должного внимания математике. Согласно теореме единственности, доказанной Робертсоном и Уокером, метрика определена однозначно, а отсюда легко прийти к выводу, что однозначность распространяется и на само пространство. Ведь именно метрика определяет пространство?
Это не так.
Метрика локальна; пространство глобально. И бесконечная евклидова плоскость, и плоский тор обладают одной и той же метрикой, так как в пределах небольших регионов их геометрия идентична. Компьютерный экран остается плоским; меняются лишь правила, связанные с выходом за его границу. На глобальном уровне у плоского тора есть особые геодезические тела, что образуют замкнутые петли в то время как у евклидовой плоскости их нет. Так что метрика не дает однозначного определения пространства. Однако специалисты по космологии так не считали. В выпуске журнала «Scientific American» за 1999 год Жан-Пьер Люмине, Гленн Старкман и Джеффри Уикс писали: «Десятилетия с 1930 по 1990 стали мрачной эпохой в отношении этого вопроса. Большинство учебников по астрономии, цитировавших друг друга в качестве обоснования, утверждали, что Вселенная должна быть либо гиперсферой, либо бесконечной евклидовой плоскостью, либо бесконечным гиперболическим пространством. Другие топологии были почти полностью забыты».
На самом деле в каждом из трех случаев возможно более одного варианта топологии. Фридман отмечал это в своей статье 1924 года для случая отрицательной кривизны, но его комментарий по какой-то причине был забыт. Конечные пространства нулевой кривизны уже были известны, и самым очевидным из них был плоский тор. Эллиптическое пространство конечно в любом случае. Но даже оно не исчерпывает всех возможных пространств с положительной кривизной этот факт был изве