Наука плоского мира IV: Судный день — страница 62 из 71

Инопланетное солнце тоже должно быть особенным. На самом деле, оно будет удивительно похоже на наше. Не только своим спектральным классом, общей формой, размером, типом ядерных реакций, но и своим местоположением. Солнце не должно находиться вблизи спиральных рукавов галактики, поскольку процесс формирования звезд порождает огромное количество излучения, а большая часть звезд образуются как раз в спиральных рукавах. С другой стороны, как видно на примере нашего Солнца, оно не может располагаться слишком далеко. Более того, инопланетное солнце должно находиться в достаточной близости от галактического центра, чтобы тяжелых элементов хватило для формирования планеты с каменистым ядром, и в то же время достаточно далеко, чтобы избежать воздействия интенсивного излучения, которое уничтожит жизнь.

Точнее, углеродные формы жизни, похожие на наши вот только никакой другой жизни быть не может. Углерод это уникальный элемент; он образует сложные молекулы, необходимые для построения живых существ. На его свойства опираются утверждения о том, что жизнь в любом месте Вселенной должны быть похожа на земную. Однако в космическом порядке вещей вероятность существования углерода довольно мала. Он существует лишь благодаря удивительно точному соответствию между энергетическими уровнями ядерных реакций, протекающих внутри звезд. Так что звезды уникальны, а причина тому жизнь.

Впрочем, не только звезды. Уникальна вся наша Вселенная, которая, благодаря тонкой настройке, приспособлена к существованию жизни. Основополагающая физика, лежащая в основе всех явлений нашей Вселенной, зависит примерно от тридцати фундаментальных констант чисел, характеризующих силу тяготения, скорость света, атомные силы и так далее. Эти числа возникают в фундаментальных законах природы, в теории относительности и квантовой механике, и нет, по-видимому, никакой математической причины, которая бы объясняла, почему эти константы имеют именно такое, а не иное значение. Это «регулируемые параметры» ручки приборной панели, которые бог-творец мог (-ла, — ло) выставить на любое значение, какое Он/Она/Оно пожелает. Но расчеты, что характерно, показывают: если бы любая из этих констант хотя бы немного отклонилась от своего настоящего значения, то не только жизнь стала бы невозможной, а не было бы ни планет, на которых эта самая жизнь могла бы поселиться, ни звезд, которые предоставили бы ей необходимую энергию, ни даже атомов, из которых состоит материя.

Наша Вселенная, как и жизнь, каким-то невероятным образом балансирует на тончайшем лезвии ножа, и малейшее отклонение от равновесия привело бы ее к катастрофе.

Описанный сценарий тонкой космологической настройки в широких кругах считается одной из главных загадок космологии цепочки крайне маловероятных совпадений, которые требуют рационального объяснения, но, по-видимому, приводят лишь к фантастическим домыслам, которые опираются на физические теории, на данный момент не подтвержденные какими-либо фактами. Религиозные фундаменталисты ухватились за эту идею, расценив ее как доказательство существования Бога. Но даже атеисту сложно не испытывать к ним симпатию, потому что в картине, явленной нам наукой, как правило, можно было увидеть безошибочный намек на то или иное проявление замысла во Вселенной.

С позиции человекоориентированного мышления, тонкая настройка будь то земная или космологическая выглядит вполне разумным явлением. Однако для мышления, ориентированного на Вселенную, она, по-видимому, создает большие трудности.

В попытке справиться с этими трудностями наука, по большей части, исходит из предположения, что тонкая настройка действительно имеет место, то есть наша Вселенная уникальна в отношении своей способности поддерживать жизнь. Отсюда легко прийти к убеждению, что мы являемся целью всего сущего, или даже что без нас не было бы наблюдателей, способных вызвать коллапс вселенской волновой функции, благодаря которому она по-прежнему продолжает существовать. Предлагались и менее человекоориентированные объяснения например, практически бесконечный цикл создания и разрушения различных вселенных, которые могут быть замечены своими разумными обитателями только при условии, что такие разумные обитатели могут в них существовать, или бескрайняя Мультивселенная, состоящая из параллельных или независимых друг от друга миров, в которых реализуются все возможные физические теории. В обоих случаях мы избавлены от необходимости объяснять какую-либо конкретную Вселенную. От невероятного размаха фантастических гипотез, основанных всего лишь на нескольких числах, захватывает дух.

Впрочем, есть и другой путь. Вместо того, чтобы принимать на веру гипотезу о тонкой настройке и пытаться дать ей объяснение или опровергнуть ее мы можем поставить под сомнение саму гипотезу. Начнем с того, что физики, как это ни странно, не могут придумать других альтернативных Вселенных, кроме тех, что отличаются от нашей всего лишь несколькими константами. Еще удивительнее то, что верующие без тени сомнения заключают в точно такие же рамки творческие способности своего всемогущего божества. Но даже если мы согласны с этими ограничениями, излишняя мистика тонкой настройки, граничащая с мифологией, не вызывает сомнения как минимум последние десять лет.

Корни этих проблем глубоки, и важно не обойти их стороной, поддавшись на какое-нибудь правдоподобное «объяснение», которое упускает из вида главное. К примеру, слабый антропный принцип о том, что мы можем наблюдать Вселенную, только если она приспособлена для нашего существования действительно объясняет, почему наша Вселенная должна удовлетворять некоторым жестким ограничениям. Так как мы существуем, иначе и быть может. Но это всего лишь другой способ выразить мысль «Вселенная такова, какова она есть». С тем же успехом мы могли бы начать, скажем, с существования серы и прийти к выводу, что атомная теория должна быть именно такой, какой мы ее себе представляем. Слабый антропный принцип кажется непохожим на «слабый серный принцип»[103] лишь потому, что последний говорит не о нас, а о кусочке желтого камня. Но принцип Коперника предостерегает нас от фантазий о собственной уникальности, и в данном случае ни о какой уникальности речь не идет. Мы всего лишь одно из материальных свидетельств. Столь же убедительным был бы довод в пользу того, что целью уникальной настройки Вселенной было создание серы.

Слабый антропный принцип не идет дальше сказанного. Он не объясняет, почему существует именно такая, а не иная разновидность Вселенной особенно если учесть, что почти все альтернативные варианты предположительно разваливаются на части или взрываются сразу же после своего появления на свет, либо оказываются настолько скучными, что в них могут возникать лишь самые простые структуры. С другой стороны, такого объяснения не дает и сильный антропный принцип, который гласит, что целью создания Вселенной было человеческое существование. Столь же легко мы могли бы сформулировать «сильный серный принцип» Вселенная была создана для того, чтобы в ней могла существовать сера.

Почему мы? Сильный антропный принцип просто принимает на веру очевидность того факта, что в нас заключен смысл всего сущего. Сера? Не смешите!

Давайте в качестве разминки обсудим историю с углеродом как более простую для понимания. А затем познакомимся с этими загадочными фундаментальными константами. Оба вопроса уже обсуждались в «Науке Плоского Мира II: Земной Шар», и теперь, прежде, чем двигаться дальше, нам придется кое-что из этого напомнить. Вкратце.

Астрофизики сформулировали тщательно выверенное теорию, объясняющую происхождение химических элементов. Комбинации элементарных частиц протонов, нейтронов или их более экзотических предшественников собрались в гигантские облака и сформировали атомы самого легкого элемента водорода. Ранняя Вселенная была достаточно горячей, чтобы атомы водорода могли сливаться друг с другом, образуя второй по массе элемент гелий. Затем облака сжались под влиянием собственной гравитации, и в дело вступили ядерные реакции. Появились звезды, внутри которых происходила сборка новых элементов с атомными массами до железа включительно. В недрах красных гигантов под влиянием более тонких процессов возникали более тяжелые элементы вплоть до висмута. Для синтеза всех остальных элементов требовались высокоэнергетические процессы, которые происходили только в сверхновых звездах массивных взрывах звездного вещества.

В 1954 году астроном Фред Хойл понял, что с углеродом связана одна трудность. Во Вселенной его было намного больше, чем можно было бы объяснить, опираясь на известные ядерные реакции. А углерод неотъемлемая часть жизнь. Углерод может формироваться в красных гигантах в результате так называемого «тройного альфа-процесса», при котором три ядра гелия (то есть атомы, лишенные своих электронов) практически одновременно сталкиваются друг с другом. Ядро гелия состоит из двух протонов и двух нейтронов. Таким образом, комбинация из трех ядер должна создать новое ядро с шестью протонами и шестью нейтронами. Это и есть углерод.

В плотной среде красного гиганта столкновения ядер происходят сравнительно часто. Однако вероятность того, что к двум только что столкнувшимся ядрам сразу присоединится третье, не так уж велика. Так что процесс должен протекать в два этапа. Сначала два ядра гелия сталкиваются друг с другом и, сливаясь, образуют бериллий. Он, в свою очередь, сливается с третьим ядром. Проблема этой теории заключается в том, что упомянутая разновидность бериллия распадается спустя десятиквадриллионную долю секунды. Шансы на то, что ядро гелия сможет поразить такую недолговечную мишень, слишком малы.

Хойл об этом знал, но ему также было известно и об одной лазейке. Если совместная энергия бериллия и гелия будет очень мало отличаться от энергетического уровня углерода, то слияние ядер может произойти намного быстрее, и все расчеты сойдутся. Почти точное совпадение энергий такого рода называется резонансом. На тот момент не было известно ни одного подходящего резонанса, но Хойл настаивал на том, что он обязате