Наука Плоского мира. Книга 3. Часы Дарвина — страница 34 из 63

В среду управляющий рвет на себе волосы, когда прибывает бесконечное множество автобусов из «Бесконечных туров». Сами автобусы обозначены буквами бесконечного алфавита: A, B, C… А прибывшие в них туристы – A1, A2, A3…, B1, B2, B3…, C1, C2, C3… и так далее. И тут управляющего посещает гениальная мысль. В бесконечно большом углу бесконечно большой парковки он группирует всех новоприбывших в бесконечно большой квадрат:


A1 A2 A3 A4 A5…

B1 B2 B3 B4 B5…

C1 C2 C3 C4 C5…

D1 D2 D3 D4 D5…

E1 E2 E3 E4 E5…


А затем выстраивает в одну бесконечно длинную линию в порядке:


A1 – A2 B1 – A3 B2 C1 – A4 B3 C2 D1 – A5

B4 C3 D2 E1 …


(Чтобы понять закономерность, посмотрите на последовательность диагоналей, тянущихся из верхнего правого угла в нижний левый. Чтобы разделить их, мы вставили дефисы.) Большинство людей сейчас переселило бы прежних постояльцев в четные номера и заполнило бы нечетные новоприбывшими в порядке бесконечно длинной очереди. Это возможно, но есть более красивый способ, и управляющий, будучи математиком, сразу же его находит. Он загружает всех в один автобус, рассаживая туристов в порядке бесконечно длинной очереди. Таким образом он сводит задачу до предыдущей, которую мы уже решили[47].

Отель Гильберта приучает нас быть осторожными, когда мы делаем предположения о бесконечности. Она может вести себя не так, как обычные конечные числа. Если добавить к ней единицу, она не станет больше. Если умножить бесконечность на бесконечность, она все равно не станет больше. Вот такая она, бесконечность. Можно даже сказать, что любая сумма, включающая бесконечность, становится бесконечной, потому получить что-либо большее, чем бесконечность, нельзя.


Так все и думали – но это справедливо только для потенциальных бесконечностей в виде последовательностей конечного числа шагов, которые теоретически могут продолжаться сколько угодно. Однако в 1880 году Кантор задумался об актуальных бесконечностях и открыл настоящий ящик Пандоры с еще бóльшими бесконечностями. Он назвал их трансфинитными числами, столкнувшись с ними, когда работал в традиционной и даже священной области математического анализа. Это и вправду была трудная техническая задача, и она вывела его на незнакомую дорогу. Глубоко погрузившись в природу этих вещей, Кантор отвлекся от своей работы в столь уважаемой области анализа и начал размышлять о кое-чем более сложном.

О счете.

Мы обычно знакомим детей с числами, когда учим их считать. Они узнают, что числа – это «то, что мы используем для счета». Например, «семь» – это число, на котором мы остановимся в воскресенье, если начнем с «одного» в понедельник. Значит, количество дней в неделе равно семи. Но что это за зверь такой – семь? Слово? Нет, ведь вместо него можно использовать знак «7». Знак? Но ведь есть же слово… К тому же на японском знак «7» выглядит по-другому. Там что значит 7? Легко сказать: семь дней, семь овечек, семь цветов радуги… Но что такое само число? Вам никогда не попадется голая «семерка», она всегда привязана к какой-нибудь совокупности.

Кантор решил сделать из нужды добродетель и объявил, что число – это что-то, связанное с множеством или совокупностью предметов. Множество можно составить из любой совокупности любых предметов. Интуитивно вы понимаете, что число, которое получится у вас при подсчете, показывает, сколько предметов содержится во множестве. Множество дней недели обозначено числом «семь». Удивительное свойство подхода Кантора заключается вот в чем: вы можете, не проводя подсчетов, определить, есть ли другие множества с семью предметами. Для этого достаточно лишь попытаться сопоставить предметы из множества, чтобы каждый предмет в одном множестве в точности соответствовал предмету в другом. Если, к примеру, взять в качестве второго множества цвета радуги, получится что-то вроде следующего:


Понедельник – Красный

Вторник – Оранжевый

Среда – Желтый

Четверг – Зеленый

Пятница – Синий

Суббота – Фиолетовый[48]

Воскресенье – Октариновый


Порядок, в котором они перечислены, не имеет значения. Но нельзя связывать вторник одновременно с фиолетовым и зеленым или зеленый одновременно со вторником и воскресеньем. Как и вычеркивать предметы из множества.

А если вы попытаетесь сопоставить дни недели со слонами, держащими Диск, у вас ничего не выйдет:


Понедельник – Берилия

Вторник – Тубул

Среда – Великий Т'Фон

Четверг – Джеракин

Пятница –?


Точнее, у вас закончатся слоны. Даже легендарный пятый элефант не позволит вам продвинуться дальше пятницы.

Так в чем же разница? Ну, в неделе семь дней, а в радуге семь цветов, поэтому они легко соотносятся друг с другом. Но слонов всего четыре (раньше, возможно, было пять), а четыре или пять нельзя соотнести с семью.

Глубинный философский смысл этой задачи состоит в том, что вам не нужно знать о числах четыре, пять или семь, чтобы понять, что они не соотносятся. Сами числа играют второстепенную роль. Соотнесение по логике первично в сравнении со счетом[49]. А всем множествам, которые соотносятся друг с другом, можно приписать общий символ, или «мощность», которая, по сути, и будет этим числом. Например, мощность множества дней недели равна семи, и она же применима к любому множеству, которое с ним соотносится. Так что мы можем обосновать наше понятие о числах на более простом понятии о соотнесении.


Итак, пока ничего нового. Но «соотнесение» имеет смысл не только для конечных, но и для бесконечных множеств. Можно соотнести четные числа со всеми числами:


2 1

4 2

6 3

8 4

10 5


и так далее. Соотнесения таких множеств объясняют случай отеля Гильберта. Именно отсюда Гильберт почерпнул свою идею (сначала крыша, а потом фундамент, помните?).

Какова мощность множества всех чисел (и, соответственно, любого соотносящегося с ним числа)? Традиционно ее называют «бесконечностью». Кантор в 1883 году осмотрительно предпочел название, которое вызывало меньше ассоциаций, – «алеф», первой буквы еврейского алфавита. И добавил нолик – очень скоро вы узнаете, почему, – получив «алеф-нуль».

Он понимал, какую кашу заваривает: «Я прекрасно осознаю, что, принимая такое действие, я противопоставляю себя распространенным в математике взглядам на бесконечность и нынешним мнениям относительно природы чисел». И получил то, чего ожидал – враждебное отношение, особенно со стороны Леопольда Кронекера. «Бог создал целые числа, остальное – творение Человека», заявил последний.

Но в наши дни большинство людей полагает, что целые числа – это тоже творение Человека.

Зачем вводить новый знак (да еще и из еврейского алфавита)? Если бы, по мнению Кантора, существовала лишь одна бесконечность, он мог бы, как все, просто называть ее «бесконечностью» и в качестве ее символа использовать лежащую на боку восьмерку. Но под своим углом зрения он быстро заметил, что могут существовать и другие бесконечности и дал им правильные имена: алеф-один, алеф-два, алеф-три и так далее.

Как это так – другие бесконечности? Они оказались важным и неожиданным следствием из простой детской идеи сопоставления. Чтобы описать, откуда они взялись, нам нужно немного рассказать о действительно больших числах. И конечных, и бесконечных. Для того чтобы вы убедились, что они не такие уж страшные, мы примем одну условность.

Если n – это любое число любого размера, то n-плекс будет означать 10n, то есть 1 с n нулей. Так, 2-плекс равен 100 (ста), 6-плекс – 1000000 (миллиону), 9-плекс – миллиарду. При n = 100 у нас получится гугл, значит, гугл = 100-плекс. Гуглплекс по аналогии можно назвать 100-плекс-плексом.

Подобно Кантору, мы начинаем праздно размышлять о бесконечно-плексе. Но давайте выразимся точнее: как нам быть алеф-нуль-плексом? Чему равен 10алеф-нуль?

Как ни странно, на этот вопрос существует вполне разумный ответ. Это мощность множества всех действительных чисел – то есть всех чисел, которые можно представить в виде бесконечно длинной десятичной дроби. Вспомните Птагонала, философа из Эфеба, которому, как утверждается, принадлежит высказывание: «…существует отношение длины окружности к диаметру… Оно должно быть равно трем. Но так ли это на самом деле? Нет. Три целых, один, четыре, один и так далее и так далее. И все один и четыре, один и четыре. От такого можно в стельку напиться»[50]. Конечно, это намек на известнейшее из действительных чисел, для точной записи которого необходимо указать бесконечное число десятичных знаков, – π («пи»). С точностью до десятой π равно 3,1. До сотой – 3,14. До тысячной – 3,141. И так далее до бесконечности.

Кроме π, есть и огромное количество других действительных чисел. Насколько велико их фазовое пространство?

Рассмотрим десятичные знаки. Если мы ограничимся одной цифрой после запятой, получится 10 возможностей: любая из цифр 0, 1, 2… 9. Ограничимся двумя – 100 возможностей: от 00 до 99. Тремя – 1000 возможностей: от 000 до 999.

Закономерность очевидна. Если мы ограничимся n знаками после запятой, получится 10n возможностей. Иными словами – n-плекс.

Если эти знаки будут продолжаться «вечно», то необходимо уточнить, о какой именно «вечности» идет речь. И ответом будет «алеф-нуль Кантора», потому что в нем есть первая цифра после запятой, вторая, третья… и их можно соотнести с целыми числами. И если мы примем n за алеф-нуль, то мощность множества всех действительных чисел (не считая знаки перед запятой) будет равно алеф-плексу. Если все же учитыватьзнаки перед запятой, это утверждение тоже будет справедливым, но уже по более сложным причинам