Однако с тех пор набрала популярность другая идея: гипотеза Мира РНК. РНК и ДНК – нуклеиновые кислоты, названные так потому, что они находятся в ядрах (лат. nucleus) клеток. Помимо ДНК и РНК существуют другие нуклеиновые кислоты; некоторые проще, иные много сложнее. Обе макромолекулы представляют собой длинные цепочки, образованные четырьмя фрагментами – нуклеотидами, являющимися, в свою очередь, комбинациями оснований, то есть особенных молекул, похожих на сложные аминокислоты, связанные воедино сахарами и фосфатами. Ну как? Вам полегчало? Сомневаемся. За подробностями вы можете обратиться к другим источникам, а сейчас нам надо было всего лишь договориться о терминологии, относящейся к тому, что мы обсуждаем.
Нуклеиновые кислоты научились извлекать выгоду из своей замечательной способности образовывать двойные цепочки: каждая половина кодирует одну и ту же информацию взаимозависимым образом. Четыре основания, обозначенные буквенными кодами, образуют две связанные пары, а последовательность оснований одной цепочки комплиментарна по отношению к основаниям другой. Это делает возможной главную особенность этих пар: одна цепочка определяет происходящее во второй. Вот они расходятся, каждая половинка обзаводится новым «партнёром», прикрепляясь к комплиментарным основаниям, и… О, чудо! Только что у нас была одна двойная цепочка, а теперь их две, причём абсолютно идентичных. При наличии достаточного количества свободных оснований молекула реплицируется, и остановить её непросто.
У РНК другие «козыри». Она может функционировать как энзим, биологический катализатор, причём являться катализатором для собственной репликации. (Катализатор – это молекула, которая ускоряет химическую реакцию, но сама в ней не участвует: она «подстёгивает» другие вещества, а затем «отходит в сторону».) Таким образом, РНК катализирует многие химические реакции, полезные живым организмам. Молекула РНК – это «ремонтник-универсал». Если бы удалось объяснить, как РНК появляется из неживой материи, это стало бы большим шагом от неорганической химии к примитивным живым формам. К сожалению, понять, как РНК могла самостоятельно возникнуть в первобытном «бульоне», очень трудно. На протяжении многих лет теории Мира РНК не хватало важнейшего звена.
Недавно этот недостаток было устранён. Найдено множество разнообразных решений проблемы, включая те, которые работают не только в теории, но и на практике. Вначале получаемые цепочки были короткими, ведь цепочку из 6 оснований создать легко. Теперь их длина может доходить до 50 и больше, а это уже близко к настоящим биологическим энзимам, имеющим обычно от 100 до 250 оснований. Появилась надежда, что длинные цепочки РНК имелись в первобытном «бульоне». Всё это выглядит ещё более правдоподобно, если учесть, что в условиях, максимально приближенных к предполагаемой обстановке молодой Земли, были синтезированы жировые мембраны, весьма напоминающие мембраны клеток. РНК вполне могут соединяться с ними. Недавно было высказано предположение, что под воздействием высоких температур «чёрных курильщиков» цепочки РНК могли неоднократно разделяться на части (расходиться), а затем соединяться в более холодных водах конвекционных течений. Эта идея нам симпатична, ведь точно таким же образом мультиплицируют ДНК в полимеразной цепной реакции при анализе последовательности молекулы: чередованием высоких и низких температур заставляют цепочки ДНК расходиться и выстраивать новые комплиментарные связи, многократно удваивая число копий. Благодаря подобному естественному физико-химическому процессу вполне могла бы воспроизводиться и РНК.
Не только по этой, но и по многим другим причинам гипотеза Мира РНК для ранних стадий развития жизни на Земле смотрится сегодня довольно сносно. Неизвестно, конечно, как всё было на самом деле, но предлагаемый сценарий кажется нам правдоподобным. И даже если жизнь возникла каким-либо другим способом, данная гипотеза доказывает, что никакого сверхъестественного вмешательства для этого не требуется. В первобытных морях, может быть, близ «чёрных курильщиков», может быть, на прибрежных пляжах, где вода хорошо прогревалась, получала много солнечной радиации и разбавлялась приливами, а возможно, под воздействием вулканов или землетрясений, так или иначе, но цепочки РНК росли и размножались.
Процесс копирования не всегда проходил абсолютно точно, однако это стало несомненным преимуществом, поскольку безо всякого потустороннего вмешательства вело к разнообразию. Если случайная вариация сопровождалась неким механизмом отбора, поощряющим определённые параметры, тогда РНК могла (и должна была) эволюционировать. Отбор – вовсе не проблема, скорее проблемой станет его предотвращение. Едва появляются некие особенные последовательности со специфическими свойствами, конкуренция между ними за свободные нуклеотиды при взаимодействии с отдельными жировыми мембранами сметёт с дороги одни виды таких последовательностей, тогда как другие будут процветать. Это прямой путь к удлинению цепочек и возникновению у них ещё большего количества особенных свойств.
Как только начинается естественный отбор, вся система становится живой.
С этой точки зрения эволюция путём естественного отбора не только объясняет разнообразие жизни, она является неотъемлемым элементом того, что и породило саму жизни. В условиях достаточного разнообразия копирование возможных ошибок, если они не возникают слишком часто, может играть созидательную роль.
Но Мир РНК – не единственная возможная альтернатива. Последняя из выдвинутых гипотез происхождения жизни предполагает определяющую роль вирусов в этом процессе. Вирусы – это такие длинные цепочки ДНК или РНК, как правило, окружённые белковой оболочкой, позволяющей им внедряться в другие организмы, как например, в бактерии, в животные или растительные клетки. Для размножения большинство вирусов полагаются на ДНК/РНК систему копирования инфицированного организма. Когда клетка или организм гибнет, новые копии вирусов распространяются в окружающей среде.
Со времени опубликования в 1977 году работы Карла Вёзе таксономы (учёные, занимающиеся классификацией бесчисленных форм жизни) признали наличие трёх фундаментальных доменов – крупнейших и старейших ветвей на Древе жизни: бактерий, архей и эукариотов. Существа первых двух доменов, являясь микроорганизмами, внешне похожи, но история их эволюции различна. Вероятно, археи – самый древний из трёх доменов. Его представители обитают в странных и неожиданных местах: в очень солёных, в очень жарких или, напротив, в очень холодных. О бактериях вы уже знаете. Оба типа организмов – прокариоты, то есть их генетический материал не упакован в ядре клетки, а прикрепляется к плазматической мембране или плавает в цитоплазме в виде замкнутых в кольцо молекул, так называемых плазмид.
Третий домен – эукариоты – отличается наличием ядерных клеток. Сюда входят и сложные «многоклеточные» организмы, от насекомых и червей до слонов и китов. Ну и, конечно же, мы с вами. Кроме того, этому домену принадлежит множество одноклеточных организмов. Последовательность РНК указывает, что первый большой раскол Древа жизни произошёл, когда бактерии отделились от своих предков-архей. Затем ветвь расщепилась на архей и эукариотов. Таким образом, мы приходимся куда более близкими родственниками археям, нежели бактериям.
Вирусы не включены в эту систему, поскольку до сих пор неясно, можно ли их считать живыми, ведь большинство из них не могут самостоятельно размножаться. Раньше считалось, что существовало два пути возникновения вирусов. Некоторые их них – это аллель дикого типа, покинувшая свой геном и начавшая паразитировать на других существах, присваивая их генно-копировальную технику. Другие – это безнадёжно измельчавшие бактерии или археи. Они настолько погрязли в своём паразитическом существовании, что потеряли всё, кроме своих генов. Время от времени кто-нибудь из дилетантов, физиков или биологов-бунтарей (которым следовало быть более осмотрительными) предлагают идею, что, раз вирусы настолько просты, они наверняка реликты седой старины, дожившие до наших дней. Эта, безусловно, ошибочная точка зрения берёт своё начало в не менее ошибочном принципе, что и причисление амёбы к предкам только потому, что она простая. В действительности же существует множество видов амёб, некоторые из которых обладают клеточными структурами, несущими гены, и имеют по 240 хромосом, тогда как у нас с вами едва набирается 46. В каком-то смысле амёбы сложнее людей. Зачем им так много хромосом? А вот зачем: чтобы нормально функционировать, амёбе требуется уместить всю свою организацию в крошечное пространство.
В 2009 году Брюссоу написал статью, озаглавленную «Мнимая универсальность Древа жизни, или Место вирусов в живой природе»,[41] в которой он указывает, что прекрасное и ставшее уже знаковым дарвиновское Древо жизни, взятое из иллюстрации к «Происхождению видов», у корней выглядит довольно беспорядочным из-за так называемого горизонтального переноса генов. Бактерии, археи и вирусы не просто с заразительным энтузиазмом обмениваются генами, они ещё умудряются встраивать их в геномы высших животных или, напротив, удалять. Таким образом, ген одной бактерии может происходить от другой бактерии или археи, или даже от животного либо растения.
Основные агенты такого обмена – вирусы, которых на нашей планете огромное множество, вероятно, раз в десять больше, чем всех других форм жизни вместе взятых. Может показаться, что за всем этим коловращеньем генов «родословную» отдельно взятой бактерии проследить практически невозможно. И уж тем более не представляется возможным проследить «родословную» вирусов. Как ни странно, это не так. Вернее, не совсем так. Подсказки кроются в определённом порядке, в котором выстроены гены вирусов, а также в видах организмов, на которых они паразитируют. Некоторые паразитируют как на бактериях, так и на археях, поэтому можно с уверенностью сказать, что такое положение дел возникло ещё до разделения этих групп. Более того, у подобных вирусов имеется РНК-геном. Брюссоу довольно убедительно доказывает, что эти особенные вирусы могут являться реликтами Мира РНК. И именно заражение древних организмов ДНК-содержащими вирусами могло встроить ДНК в наследственность всех известных нам существ, вокруг геномов которых сейчас столько суеты. Так что изредка оказываются правы даже бунтари и физики, пусть и исходившие из ложных предпосылок.