Вероятность выбросить орел при первом броске монеты — один к двум, вероятность выбросить орел при втором броске — тоже один к двум, вероятность выбросить орел два раза подряд — один к четырем, три раза подряд — один к восьми и так далее).
Соответственно, число таких цивилизаций зависит от частоты образования звезд, обозначенной R. Чем больше звезд, тем больше потенциальных мест обитания для жизни, если у звезды формируется планетная система. Здесь вроде бы все ясно. Эту величину мы умножаем на fp, долю звезд, обладающих планетной системой. Однако одного наличия планет недостаточно, нужно, чтобы они подходили для жизни. Поэтому умножаем на np — число планет в среднестатистической системе, располагающих условиями для зарождения жизни, затем умножаем на fl — долю тех миров, где жизнь все-таки зарождается, умножаем на fi — долю таких миров, где среди существующих форм жизни развиваются разумные, умножаем на fc — долю таких, где разумные формы жизни разрабатывают технические возможности для вступления в контакт, умножаем на L — время жизни техногенной цивилизации, потому что, если цивилизация самоуничтожится, едва сформировавшись, даже если все остальное пройдет как по маслу, вступать в контакт будет просто не с кем.
Позвольте мне высказать собственные прикидки по поводу этих чисел. Подчеркну, что точное значение этих величин мы не знаем, неопределенность увеличивается от первого множителя к последнему, поэтому насчет L, времени жизни техногенной цивилизации, мы не можем сказать совсем ничего.
В галактике Млечный Путь около 100 млрд звезд.
Галактика Млечный Путь существует около 10 млрд лет, а значит, в год, по самым средним оценкам, образуется около десяти звезд. Очень интересное число само по себе. Каждый год в Млечном Пути рождается 10 новых «солнц», многие, возможно, с планетной системой. И через миллиарды лет на этих планетах может появиться жизнь.
Что касается доли звезд, вокруг которых обращаются планеты, я говорил выше о растущем в последнее время массиве данных от наземных и космических обсерваторий о планетных системах, как формирующихся, так и тех, что уже полностью сформировались вокруг соседних звезд. Статистика впечатляет. Одних только данных инфракрасной орбитальной обсерватории IRAS уже достаточно, чтобы предположить наличие подобия солнечной туманности в процессе формирования примерно у четверти ближайших звезд главной последовательности чуть моложе нашего Солнца. Это ошеломляюще много. И любую из тех, у которых имеется полностью сформированная планетная система, мы можем обнаружить лишь в определенных особых случаях. Ожидать наличия планетной системы у каждой звезды не стоит, но число выглядит очень большим. Давайте чисто теоретически, для наглядности, примем fp за половину. Теперь прикинем, сколько планет в каждой системе в принципе могут оказаться пригодными для зарождения жизни. В нашей системе мы знаем по крайней мере одну — Землю, и можно привести достаточно убедительные аргументы в пользу того, что такое возможно и на других планетах и небесных телах. Мы уже упоминали Титан. Есть доводы в пользу Марса. Не претендуя на точность, просто для простоты перемножения, давайте примем, что np у нас равно двум.
Долю экологически пригодных для жизни планет, на которых эта жизнь через сотни или тысячи миллионов лет действительно зарождается, можно считать очень высокой — на основании доводов, приведенных мною выше, и в частности скорости появления истоков жизни на нашей планете. Так что fl примем за единицу.
А теперь перейдем к более сложным величинам. На планете зародилась жизнь, у нее есть тысячи миллионов лет, в течение которых условия окружающей среды останутся более или менее стабильными. Какова вероятность возникновения разума и техногенной цивилизации? С одной стороны, можно доказывать, что для появления такого звена эволюции, как человек, необходима череда маловероятных в каждом отдельном случае событий. Например, должны были вымереть динозавры, поскольку на планете господствовали они, а наши предки в ту эпоху представляли собой пугливых шерстистых норных зверьков размером с мышь. И лишь вымирание динозавров способствовало дальнейшему развитию наших предков. А динозавры, судя по всему, вымерли из-за столкновения с Землей астероида или кометного ядра около 65 млн лет назад, в конце мелового периода. Это событие случайное, и, если бы ничего подобного не произошло, возможно, мы с вами сейчас посматривали бы на мир с высоты трехметрового роста, поблескивали зеленой чешуей и скалили бы острые длинные зубы. И, скорее всего, считали бы себя чертовски привлекательными. Писаные красавцы. Нам было бы странно слышать, что, сложись все несколько иначе, на планете в настоящее время господствовали бы эволюционировавшие потомки досаждавших нам грызунов, а от нас остались бы только хвостатые земноводные, крокодилы и птицы. Это с одной стороны.
С другой стороны, нет никаких оснований полагать, что к возникновению разума ведет только один путь. Разум обладает, бесспорно, высоким селективным преимуществом. При прочих равных, способность разобраться, как устроен этот мир, повышает шансы на выживание. По крайней мере, до изобретения ядерного оружия.
На мозг приходится значительная доля веса человеческого тела, такого соотношения нет больше почти ни у одного животного на нашей планете. Это свидетельствует о неуклонном развитии мозга как органа познания мира. Чем больше обрабатывается данных, тем больше у нас шансов на выживание. Нет причин думать, что такое возможно исключительно с человеком, скорее всего, это будет характерно и для обитателей других планет.
И тогда встает следующий вопрос: означает ли наличие разума гарантированное развитие техногенной цивилизации? Отнюдь нет. Дельфины и киты разумны, как следует из множества различных несистематических наблюдений, а также соотношения массы тела и мозга, однако они до сих пор ничего не построили, поскольку не имеют рук и живут в совершенно иной среде.
Вполне можно представить себе мир, полный поэтов, которые не строят радиотелескопы. Они очень умны, но вестей от них мы не услышим. Так что не каждая разумная форма жизни обязательно будет развивать технологии и стремиться к контакту. Поэтому никто не скажет наверняка, чему равно произведение fi× fc. Конечно, можно отталкиваться от того, что для развития птицеподобных, китообразных или приматов понадобился почти весь срок существования Земли. Все они развились только в последние несколько десятков миллионов лет. Почему так долго? Наверное, заниматься познанием можно, лишь достигнув определенного уровня развития.
С другой стороны, у Земли и Солнечной системы еще тысячи миллионов лет впереди, как и у прочих планет. Думаю, за произведение fi × fc можно принять, по самым скромным прикидкам, одну сотую, то есть 1%. (Я совершенно не утверждаю, что владею какими-то цифрами, это всего лишь грубые приблизительные оценки, позволяющие как-то сгруппировать неопределенности.Я не претендую на истину в последней инстанции.) Если перемножить эти величины — 10 × ½ × 2 × 1 × 1/100, получим 1/10. Таким образом, N — число техногенных цивилизаций в нашей галактике — будет в одну десятую раз больше их средней продолжительности жизни (L) в годах. (L исчисляется в годах, поскольку R мы брали как десять звезд в год, а в произведении никаких лет не должно быть, только число цивилизаций.)
Так чему же равно L? Каков срок жизни техногенной цивилизации? У нас радиотелескопы появились только в последние несколько десятилетий. При этом, если судить, среди прочего, по ежедневным новостям, наша цивилизация в большой опасности. Соответственно, по крайней мере для Земли, срок жизни техногенной цивилизации по этим признакам составит одно или несколько десятилетий. И если это типичный показатель для любой цивилизации, то L можно принять, скажем, равной 10 годам. Будем считать это самым пессимистичным раскладом. Одну десятую умножить на десять — получится единица, то есть на нашу галактику приходится 1 техническая цивилизация. Где она? Это мы.
Так что общаться нам остается только между собой, а в этом мы не особенно преуспеваем. Соответственно, если этот довод кажется вам верным, будет глупо организовывать масштабные дорогостоящие поиски внеземного разума, поскольку даже при L, равном нескольким десятилетиям, все равно получатся считанные единицы цивилизаций, а значит, ближайшая окажется на непреодолимом расстоянии.
А теперь рассмотрим другой подход, оптимистичный. Подразумевающий, что мы вполне способны справиться с подростковыми проблемами технологического развития, которые перед нами встают. И даже если шансы на это крайне малы, скажем 1%, то это процент от всех тех цивилизаций галактики, которые существуют достаточно долго, а это очень большое число. Допустим, одному проценту цивилизаций удается продержаться в течение сроков, измеряемых эволюционными, геохронологическими или звездно-эволюционными мерками, скажем миллиарды лет. Даже если таких всего 1%, то средняя продолжительность их жизни составит 1% от 109, то есть 107, а значит, величина L будет равна 10 млн лет. Умножим на 1/10, получится миллион, 106, цивилизаций в нашей галактике — вот это уже совсем другой разговор.
Как видим, при всей неопределенности каждой из входящих в формулу величин самую большую неопределенность, поскольку опыт в этом вопросе у нас мизерный (а точнее, нулевой), представляет средняя продолжительность жизни техногенной цивилизации. Именно соотнесенность L с числом цивилизаций и расстоянием до ближайшей из них удивительным образом увязывает довольно экстравагантный вопрос об инопланетном разуме с самыми насущными заботами человечества. Поскольку в этом случае послание — тем более если его удастся расшифровать — с другой планеты будет означать, что число L, вероятно, достаточно велико и что кому-то удалось пережить переходный технологический возраст. Такое знание нам бы очень пригодилось.
Если в Галактике миллион технических цивилизаций, то расстояние до ближайшей можно легко вычислить с точностью до первого порядка простым извлечением корня кубического.